21,642 research outputs found

    The solution of nonlinear parabolic equation using variational iteration method

    Get PDF
    Variational iteration method is a semi analytic solution used to solve   the parabolic differential  equation both of homogen or nonhomogen. In the process of determining an approximation solution, this method did not use a linearization and a small pertubation. In this paper, the variational iteration method is implemented in the parabolic differential equation  in the form of  ut = uxx + f(u) + g(x, t) with appropriate intial condition. Furthermore, some examples of special parabolic differential equations are given to test the reliability and convergence of the method. Based on the result of study shows that the variational iteration method is  able to solve the parabolic differential equation with a good accuration

    Description of nuclear systems with a self-consistent configuration-mixing approach. I: Theory, algorithm, and application to the 12^{12}C test nucleus

    Full text link
    Although self-consistent multi-configuration methods have been used for decades to address the description of atomic and molecular many-body systems, only a few trials have been made in the context of nuclear structure. This work aims at the development of such an approach to describe in a unified way various types of correlations in nuclei, in a self-consistent manner where the mean-field is improved as correlations are introduced. The goal is to reconcile the usually set apart Shell-Model and Self-Consistent Mean-Field methods. This approach is referred as "variational multiparticle-multihole configuration mixing method". It is based on a double variational principle which yields a set of two coupled equations that determine at the same time the expansion coefficients of the many-body wave function and the single particle states. The formalism is derived and discussed in a general context, starting from a three-body Hamiltonian. Links to existing many-body techniques such as the formalism of Green's functions are established. First applications are done using the two-body D1S Gogny effective force. The numerical procedure is tested on the 12^{12}C nucleus in order to study the convergence features of the algorithm in different contexts. Ground state properties as well as single-particle quantities are analyzed, and the description of the first 2+2^+ state is examined. This study allows to validate our numerical algorithm and leads to encouraging results. In order to test the method further, we will realize in the second article of this series, a systematic description of more nuclei and observables obtained by applying the newly-developed numerical procedure with the same Gogny force. As raised in the present work, applications of the variational multiparticle-multihole configuration mixing method will however ultimately require the use of an extended and more constrained Gogny force.Comment: 22 pages, 18 figures, accepted for publication in Phys. Rev. C. v2: minor corrections and references adde

    Regularization of Linear Ill-posed Problems by the Augmented Lagrangian Method and Variational Inequalities

    Full text link
    We study the application of the Augmented Lagrangian Method to the solution of linear ill-posed problems. Previously, linear convergence rates with respect to the Bregman distance have been derived under the classical assumption of a standard source condition. Using the method of variational inequalities, we extend these results in this paper to convergence rates of lower order, both for the case of an a priori parameter choice and an a posteriori choice based on Morozov's discrepancy principle. In addition, our approach allows the derivation of convergence rates with respect to distance measures different from the Bregman distance. As a particular application, we consider sparsity promoting regularization, where we derive a range of convergence rates with respect to the norm under the assumption of restricted injectivity in conjunction with generalized source conditions of H\"older type

    Modified Sumudu Transform Analytical Approximate Methods For Solving Boundary Value Problems

    Get PDF
    In this study, emphasis is placed on analytical approximate methods. These methods include the combination of the Sumudu transform (ST) with the homotopy perturbation method (HPM), namely the Sumudu transform homotopy perturbation method (STHPM), the combination of the ST with the variational iteration method (VIM), namely the Sumudu transform variational iteration method (STVIM) and finally, the combination of the ST with the homotopy analysis method (HAM), namely the Sumudu transform homotopy analysis method (STHAM). Although these standard methods have been successfully used in solving various types of differential equations, they still suffer from the weakness in choosing the initial guess. In addition, they require an infinite number of iterations which negatively affect the accuracy and convergence of the solutions. The main objective of this thesis is to modify, apply and analyze these methods to handle the difficulties and drawbacks and find the analytical approximate solutions for some cases of linear and nonlinear ordinary differential equations (ODEs). These cases include second-order two-point boundary value problems (BVPs), singular and systems of second-order two-point BVPs. For the proposed methods, the trial function was employed as an initial approximation to provide more accurate approximate solutions for the considered problems. In addition, for the STVIM method, a new algorithm has been proposed to solve various kinds of linear and nonlinear second-order two-point BVPs. In this algorithm, the convolution theorem has been used to find an optimal Lagrange multiplier
    corecore