1,967 research outputs found

    EMALG: An Enhanced Mandarin Lombard Grid Corpus with Meaningful Sentences

    Full text link
    This study investigates the Lombard effect, where individuals adapt their speech in noisy environments. We introduce an enhanced Mandarin Lombard grid (EMALG) corpus with meaningful sentences , enhancing the Mandarin Lombard grid (MALG) corpus. EMALG features 34 speakers and improves recording setups, addressing challenges faced by MALG with nonsense sentences. Our findings reveal that in Mandarin, female exhibit a more pronounced Lombard effect than male, particularly when uttering meaningful sentences. Additionally, we uncover that nonsense sentences negatively impact Lombard effect analysis. Moreover, our results reaffirm the consistency in the Lombard effect comparison between English and Mandarin found in previous research

    Parallel Reference Speaker Weighting for Kinematic-Independent Acoustic-to-Articulatory Inversion

    Get PDF
    Acoustic-to-articulatory inversion, the estimation of articulatory kinematics from an acoustic waveform, is a challenging but important problem. Accurate estimation of articulatory movements has the potential for significant impact on our understanding of speech production, on our capacity to assess and treat pathologies in a clinical setting, and on speech technologies such as computer aided pronunciation assessment and audio-video synthesis. However, because of the complex and speaker-specific relationship between articulation and acoustics, existing approaches for inversion do not generalize well across speakers. As acquiring speaker-specific kinematic data for training is not feasible in many practical applications, this remains an important and open problem. This paper proposes a novel approach to acoustic-to-articulatory inversion, Parallel Reference Speaker Weighting (PRSW), which requires no kinematic data for the target speaker and a small amount of acoustic adaptation data. PRSW hypothesizes that acoustic and kinematic similarities are correlated and uses speaker-adapted articulatory models derived from acoustically derived weights. The system was assessed using a 20-speaker data set of synchronous acoustic and Electromagnetic Articulography (EMA) kinematic data. Results demonstrate that by restricting the reference group to a subset consisting of speakers with strong individual speaker-dependent inversion performance, the PRSW method is able to attain kinematic-independent acoustic-to-articulatory inversion performance nearly matching that of the speaker-dependent model, with an average correlation of 0.62 versus 0.63. This indicates that given a sufficiently complete and appropriately selected reference speaker set for adaptation, it is possible to create effective articulatory models without kinematic training data

    Articulatory-WaveNet: Deep Autoregressive Model for Acoustic-to-Articulatory Inversion

    Get PDF
    Acoustic-to-Articulatory Inversion, the estimation of articulatory kinematics from speech, is an important problem which has received significant attention in recent years. Estimated articulatory movements from such models can be used for many applications, including speech synthesis, automatic speech recognition, and facial kinematics for talking-head animation devices. Knowledge about the position of the articulators can also be extremely useful in speech therapy systems and Computer-Aided Language Learning (CALL) and Computer-Aided Pronunciation Training (CAPT) systems for second language learners. Acoustic-to-Articulatory Inversion is a challenging problem due to the complexity of articulation patterns and significant inter-speaker differences. This is even more challenging when applied to non-native speakers without any kinematic training data. This dissertation attempts to address these problems through the development of up-graded architectures for Articulatory Inversion. The proposed Articulatory-WaveNet architecture is based on a dilated causal convolutional layer structure that improves the Acoustic-to-Articulatory Inversion estimated results for both speaker-dependent and speaker-independent scenarios. The system has been evaluated on the ElectroMagnetic Articulography corpus of Mandarin Accented English (EMA-MAE) corpus, consisting of 39 speakers including both native English speakers and Mandarin accented English speakers. Results show that Articulatory-WaveNet improves the performance of the speaker-dependent and speaker-independent Acoustic-to-Articulatory Inversion systems significantly compared to the previously reported results

    Rhythmic unit extraction and modelling for automatic language identification

    Get PDF
    International audienceThis paper deals with an approach to Automatic Language Identification based on rhythmic modelling. Beside phonetics and phonotactics, rhythm is actually one of the most promising features to be considered for language identification, even if its extraction and modelling are not a straightforward issue. Actually, one of the main problems to address is what to model. In this paper, an algorithm of rhythm extraction is described: using a vowel detection algorithm, rhythmic units related to syllables are segmented. Several parameters are extracted (consonantal and vowel duration, cluster complexity) and modelled with a Gaussian Mixture. Experiments are performed on read speech for 7 languages (English, French, German, Italian, Japanese, Mandarin and Spanish) and results reach up to 86 ± 6% of correct discrimination between stress-timed mora-timed and syllable-timed classes of languages, and to 67 ± 8% percent of correct language identification on average for the 7 languages with utterances of 21 seconds. These results are commented and compared with those obtained with a standard acoustic Gaussian mixture modelling approach (88 ± 5% of correct identification for the 7-languages identification task)

    Speech intelligibility in multilingual spaces

    Get PDF
    This thesis examines speech intelligibility and multi-lingual communication, in terms of acoustics and perceptual factors. More specifically, the work focused on the impact of room acoustic conditions on the speech intelligibility of four languages representative of a wide range of linguistic properties (English, Polish, Arabic and Mandarin). Firstly, diagnostic rhyme tests (DRT), phonemically balanced (PB) word lists and phonemically balanced sentence lists have been compared under four room acoustic conditions defined by their speech transmission index (STI = 0.2, 0.4, 0.6 and 0.8). The results obtained indicated that there was a statistically significant difference between the word intelligibility scores of languages under all room acoustic conditions, apart from the STI = 0.8 condition. English was the most intelligible language under all conditions, and differences with other languages were larger when conditions were poor (maximum difference of 29% at STI = 0.2, 33% at STI = 0.4 and 14% at STI = 0.6). Results also showed that Arabic and Polish were particularly sensitive to background noise, and that Mandarin was significantly more intelligible than those languages at STI = 0.4. Consonant-to-vowel ratios and languages’ distinctive features and acoustical properties explained some of the scores obtained. Sentence intelligibility scores confirmed variations between languages, but these variations were statistically significant only at the STI = 0.4 condition (sentence tests being less sensitive to very good and very poor room acoustic conditions). Additionally, perceived speech intelligibility and soundscape perception associated to these languages was also analysed in three multi-lingual environments: an airport check-in area, a hospital reception area, and a café. Semantic differential analysis showed that perceived speech intelligibility of each language varies with the type of environment, as well as the type of background noise, reverberation time, and signal-to-noise ratio. Variations between the perceived speech intelligibility of the four languages were only marginally significant (p = 0.051), unlike objective intelligibility results. Perceived speech intelligibility of English appeared to be mostly affected negatively by the information content and distracting sounds present in the background noise. Lastly, the study investigated several standards and design guidelines and showed how adjustments could be made to recommended STI values in order to achieve consistent speech intelligibility ratings across languages

    Speaker Independent Acoustic-to-Articulatory Inversion

    Get PDF
    Acoustic-to-articulatory inversion, the determination of articulatory parameters from acoustic signals, is a difficult but important problem for many speech processing applications, such as automatic speech recognition (ASR) and computer aided pronunciation training (CAPT). In recent years, several approaches have been successfully implemented for speaker dependent models with parallel acoustic and kinematic training data. However, in many practical applications inversion is needed for new speakers for whom no articulatory data is available. In order to address this problem, this dissertation introduces a novel speaker adaptation approach called Parallel Reference Speaker Weighting (PRSW), based on parallel acoustic and articulatory Hidden Markov Models (HMM). This approach uses a robust normalized articulatory space and palate referenced articulatory features combined with speaker-weighted adaptation to form an inversion mapping for new speakers that can accurately estimate articulatory trajectories. The proposed PRSW method is evaluated on the newly collected Marquette electromagnetic articulography - Mandarin Accented English (EMA-MAE) corpus using 20 native English speakers. Cross-speaker inversion results show that given a good selection of reference speakers with consistent acoustic and articulatory patterns, the PRSW approach gives good speaker independent inversion performance even without kinematic training data
    corecore