4 research outputs found

    Learning Algorithm for a Brachiating Robot

    Get PDF
    If charity begins at home, scholarship on the charitable deduction has stayed at home. In the vast legal literature, few authors have engaged the distinction between charitable contributions that are meant to be used within the United States and charitable contributions that are meant to be used abroad. Yet these two types of contributions are treated very differently in the Code and raise very different policy issues. As Americans\u27 giving patterns and the U.S. nonprofit sector grow increasingly international, the distinction will only become more salient. This Article offers the first exploration of how theories of the charitable deduction apply to internationally targeted donations. In so doing, the Article aims to contribute not only to a methodological shift in nonprofit tax scholarship (a strategic remapping), but also to a reappraisal of the deduction literature (an analytic remapping): just as existing theories of the deduction can inform our understanding of foreign charity, considerations of foreign charity can shed light back on the existing theories. I argue that the standard rationales are underdetermined and undertheorized, and propose a new, integrated approach to the charitable deduction. Internationally targeted donations emerge from the analysis holding a strong claim to deductibility – often a stronger claim than domestically targeted donations hold – on almost every relevant dimension, which calls into question current regulations that privilege domestic giving. Oversight and foreign policy concerns, however, complicate the ideal of geographic neutrality and illuminate the charitable deduction\u27s role as an instrument of statecraft. Admitting foreign charity into the debate over the deduction thus changes the debate\u27s terms; it gives deduction theory new urgency as well as new complexity

    Dynamic Modeling, Design and Control of Wire-Borne Underactuated Brachiating Robots: Theory and Application

    Get PDF
    The ability of mobile robots to locomote safely in unstructured environments will be a cornerstone of robotics of the future. Introducing robots into fully unstructured environments is known to be a notoriously difficult problem in the robotics field. As a result, many of today's mobile robots are confined to prepared level surfaces in laboratory settings or relatively controlled environments only. One avenue for deploying mobile robots into unstructured settings is to utilize elevated wire networks. The research conducted under this thesis lays the groundwork for developing a new class of wire-borne underactuated robots that employs brachiation -- swinging like an ape -- as a means of locomotion on flexible cables. Executing safe brachiation maneuvers with a cable-suspended underactuated robot is a challenging problem due to the complications induced by the cable dynamics and vibrations. This thesis studies, from concept through experiments, the dynamic modeling techniques and control algorithms for wire-borne underactuated brachiating robots, to develop advanced locomotion strategies that enable the robots to perform energy-efficient and robust brachiation motions on flexible cables. High-fidelity and approximate dynamic models are derived for the robot-cable system, which provide the ability to model the interactions between the cable and the robot and to include the flexible cable dynamics in the control design. An optimal trajectory generation framework is presented in which the flexible cable dynamics are explicitly accounted for when designing the optimal swing trajectories. By employing a variety of control-theoretic methods such as robust and adaptive estimation, control Lyapunov and barrier functions, semidefinite programming and sum-of-squares optimization, a set of closed-loop control algorithms are proposed. A novel hardware brachiating robot design and embodiment are presented, which incorporate unique mechanical design features and provide a reliable testbed for experimental validation of the wire-borne underactuated brachiating robots. Extensive simulation results and hardware experiments demonstrate that the proposed multi-body dynamic models, trajectory optimization frameworks, and feedback control algorithms prove highly useful in real world settings and achieve reliable brachiation performance in the presence of uncertainties, disturbances, actuator limits and safety constraints.Ph.D

    Stability and weight smoothing in CMAC neural networks

    Get PDF
    Although the CMAC (Cerebellar Model Articulation Controller) neural network has been successfully used in control systems for many years, its property of local generalization, the availability of trained information for network responses at adjacent untrained locations, although responsible for the networks rapid learning and efficient implementation, results in network responses that is, when trained with sparse or widely spaced training data, spiky in nature even when the underlying function being learned is quite smooth. Since the derivative of such a network response can vary widely, the CMAC\u27s usefulness for solving optimization problems as well as for certain other control system applications can be severely limited. This dissertation presents the CMAC algorithm in sufficient detail to explore its strengths and weaknesses. Its properties of information generalization and storage are discussed and comparisons are made with other neural network algorithms and with other adaptive control algorithms. A synopsis of the development of the fields of neural networks and adaptive control is included to lend historical perspective. A stability analysis of the CMAC algorithm for open-loop function learning is developed. This stability analysis casts the function learning problem as a unique implementation of the model reference structure and develops a Lyapunov function to prove convergence of the CMAC to the target model. A new CMAC learning rule is developed by treating the CMAC as a set of simultaneous equations in a constrained optimization problem and making appropriate choices for the weight penalty matrix in the cost equation. This dissertation then presents a new CMAC learning algorithm which has the property of weight smoothing to improve generalization, function approximation in partially trained networks and the partial derivatives of learned functions. This new learning algorithm is significant in that it derives from an optimum solution and demonstrates a dramatic performance improvement for function learning in the presence of widely spaced training data. Developed from a completely unique analytical direction, this algorithm represents a coupling and extension of single- and multi-resolution CMAC algorithms developed by other researchers. The insights derived from the analysis of the optimum solution and the resulting new learning rules are discussed and suggestions for future work are presented

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field
    corecore