13 research outputs found

    Progressively communicating rich telemetry from autonomous underwater vehicles via relays

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2012As analysis of imagery and environmental data plays a greater role in mission construction and execution, there is an increasing need for autonomous marine vehicles to transmit this data to the surface. Without access to the data acquired by a vehicle, surface operators cannot fully understand the state of the mission. Communicating imagery and high-resolution sensor readings to surface observers remains a significant challenge – as a result, current telemetry from free-roaming autonomous marine vehicles remains limited to ‘heartbeat’ status messages, with minimal scientific data available until after recovery. Increasing the challenge, longdistance communication may require relaying data across multiple acoustic hops between vehicles, yet fixed infrastructure is not always appropriate or possible. In this thesis I present an analysis of the unique considerations facing telemetry systems for free-roaming Autonomous Underwater Vehicles (AUVs) used in exploration. These considerations include high-cost vehicle nodes with persistent storage and significant computation capabilities, combined with human surface operators monitoring each node. I then propose mechanisms for interactive, progressive communication of data across multiple acoustic hops. These mechanisms include wavelet-based embedded coding methods, and a novel image compression scheme based on texture classification and synthesis. The specific characteristics of underwater communication channels, including high latency, intermittent communication, the lack of instantaneous end-to-end connectivity, and a broadcast medium, inform these proposals. Human feedback is incorporated by allowing operators to identify segments of data thatwarrant higher quality refinement, ensuring efficient use of limited throughput. I then analyze the performance of these mechanisms relative to current practices. Finally, I present CAPTURE, a telemetry architecture that builds on this analysis. CAPTURE draws on advances in compression and delay tolerant networking to enable progressive transmission of scientific data, including imagery, across multiple acoustic hops. In concert with a physical layer, CAPTURE provides an endto- end networking solution for communicating science data from autonomous marine vehicles. Automatically selected imagery, sonar, and time-series sensor data are progressively transmitted across multiple hops to surface operators. Human operators can request arbitrarily high-quality refinement of any resource, up to an error-free reconstruction. The components of this system are then demonstrated through three field trials in diverse environments on SeaBED, OceanServer and Bluefin AUVs, each in different software architectures.Thanks to the National Science Foundation, and the National Oceanic and Atmospheric Administration for their funding of my education and this work

    Underwater radio frequency image sensor using progressive image compression and region of interest

    Get PDF
    The increasing demand for underwater robotic intervention systems around the world in several application domains requires more versatile and inexpensive systems. By using a wireless communication system, supervised semi-autonomous robots have freedom of movement; however, the limited and varying bandwidth of underwater radio frequency (RF) channels is a major obstacle for the operator to get camera feedback and supervise the intervention. This paper proposes the use of progressive (embedded) image compression and region of interest (ROI) for the design of an underwater image sensor to be installed in an autonomous underwater vehicle, specially when there are constraints on the available bandwidth, allowing a more agile data exchange between the vehicle and a human operator supervising the underwater intervention. The operator can dynamically decide the size, quality, frame rate, or resolution of the received images so that the available bandwidth is utilized to its fullest potential and with the required minimum latency. The paper focuses first on the description of the system, which uses a camera, an embedded Linux system, and an RF emitter installed in an OpenROV housing cylinder. The RF receiver is connected to a computer on the user side, which controls the camera monitoring parameters, including the compression inputs, such as region of interest (ROI), size of the image, and frame rate. The paper focuses on the compression subsystem and does not attempt to improve the communications physical media for better underwater RF links. Instead, it proposes a unified system that uses well-integrated modules (compression and transmission) to provide the scientific community with a higher-level protocol for image compression and transmission in sub-sea robotic interventions

    Underwater Image Transmission Using Spatial Modulation Unequal Error Protection for Internet of Underwater Things.

    Get PDF
    A spatial modulation (SM) scheme has been developed as a hopeful candidate for spectral and energy-efficient wireless communication systems, as it provides a great judgment for the system performance, data transmission rate, receiver complexity, and energy/spectrum efficiency. In SM, the data is conveyed by both habitual M-ary signal constellations and the transmit antennas indices. Therefore, the system data rate improvement due to the side information bits transmitted, encapsulated in indices of the transmit antennas, improves the SM transmission efficiency compared to the different MIMO players. The information bits transmitted over the antenna index and data symbol constellation using M-ary signal performance have different levels of bit error rate (BER) performance. This paper proposes unequal error protection (UEP) scheme for image transmission over the Internet of Underwater Things (IoUTs) using SM. The Set Partitioning in Hierarchical Trees (SPIHT) coders encode the underwater image and classify the encoded bits in two categories: critical and uncritical bits. The critical bits are transmitted over the SM index bits and have a low BER while the uncritical bits are transmitted over high order M-ary signal constellation to resolve the underwater acoustic channel bandwidth limitation problem. The proposed SM-UEP technique has been developed carefully with enough justification and evaluation over the measured underwater acoustic channel and the simulated channel. The simulation results show that the proposed SM-UEP can increase the average peak signal-to-noise ratio (PSNR) of the reconstructed received image considerably, and significantly

    Performance Evaluation of DCT And Wavelet Coding of Image Transmission By Using of DM Technique Over Topical Shallow-Water Environment

    Get PDF
    Image transmission over under water acoustic channel is one of research trends that were developed to support under ocean environment monitoring. The result of study about the source coding performance for image transmission over underwater acoustic channel over tropical shallow-water environment is presented in this paper. By using the discrete cosine transform (DCT) and wavelet coding, image file was compressed and converted into binary data sequence. Transmission process was conducted with multicarrier OFDM system over under water acoustic channel. An evaluation has been implemented on base band scale by adopting channel model of previous research. With the DCT technique at Eb/No 20 dB was achieved the value of PNSR 12.69 dB, and bit error 0.0025. While by using the wavelet technique, at same Eb/No value, achieved the value of PSNR at 21.38 dB and bit error rate 0.0022. The performance evaluation also conducted visually and showing similar trend as simulation result by using pseudo random data.Keywords: DCT, wavelet, OFDM, underwater acoustic

    Zooplankton visualization system: design and real-time lossless image compression

    Get PDF
    In this thesis, I present a design of a small, self-contained, underwater plankton imaging system. I base the imaging system’s design on an embedded PC architecture based on PC/104-Plus standards to meet the compact size and low power requirements. I developed a simple graphical user interface to run on a real-time operating system to control the imaging system. I also address how a real-time image compression scheme implemented on an FPGA chip speeds up image transfer speeds of the imaging system. Since lossless compression of the image is required in order to retain all image details, I began with an established compression scheme like SPIHT, and latter proposed a new compression scheme that suits the imaging system’s requirements. I provide an estimate of the total amount of resources required and propose suitable FPGA chips to implement the compression scheme. Finally, I present various parallel designs by which the FPGA chip can be integrated into the imaging system

    Lossy compression and real-time geovisualization for ultra-low bandwidth telemetry from untethered underwater vehicles

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2008Oceanographic applications of robotics are as varied as the undersea environment itself. As underwater robotics moves toward the study of dynamic processes with multiple vehicles, there is an increasing need to distill large volumes of data from underwater vehicles and deliver it quickly to human operators. While tethered robots are able to communicate data to surface observers instantly, communicating discoveries is more difficult for untethered vehicles. The ocean imposes severe limitations on wireless communications; light is quickly absorbed by seawater, and tradeoffs between frequency, bitrate and environmental effects result in data rates for acoustic modems that are routinely as low as tens of bits per second. These data rates usually limit telemetry to state and health information, to the exclusion of mission-specific science data. In this thesis, I present a system designed for communicating and presenting science telemetry from untethered underwater vehicles to surface observers. The system's goals are threefold: to aid human operators in understanding oceanographic processes, to enable human operators to play a role in adaptively responding to mission-specific data, and to accelerate mission planning from one vehicle dive to the next. The system uses standard lossy compression techniques to lower required data rates to those supported by commercially available acoustic modems (O(10)-O(100) bits per second). As part of the system, a method for compressing time-series science data based upon the Discrete Wavelet Transform (DWT) is explained, a number of low-bitrate image compression techniques are compared, and a novel user interface for reviewing transmitted telemetry is presented. Each component is motivated by science data from a variety of actual Autonomous Underwater Vehicle (AUV) missions performed in the last year.National Science Foundation Center for Subsurface Sensing and Imaging (CenSSIS ERC

    MICCS: A Novel Framework for Medical Image Compression Using Compressive Sensing

    Get PDF
    The vision of some particular applications such as robot-guided remote surgery where the image of a patient body will need to be captured by the smart visual sensor and to be sent on a real-time basis through a network of high bandwidth but yet limited. The particular problem considered for the study is to develop a mechanism of a hybrid approach of compression where the Region-of-Interest (ROI) should be compressed with lossless compression techniques and Non-ROI should be compressed with Compressive Sensing (CS) techniques. So the challenge is gaining equal image quality for both ROI and Non-ROI while overcoming optimized dimension reduction by sparsity into Non-ROI. It is essential to retain acceptable visual quality to Non-ROI compressed region to obtain a better reconstructed image. This step could bridge the trade-off between image quality and traffic load. The study outcomes were compared with traditional hybrid compression methods to find that proposed method achieves better compression performance as compared to conventional hybrid compression techniques on the performances parameters e.g. PSNR, MSE, and Compression Ratio

    Remote Sensing Data Compression

    Get PDF
    A huge amount of data is acquired nowadays by different remote sensing systems installed on satellites, aircrafts, and UAV. The acquired data then have to be transferred to image processing centres, stored and/or delivered to customers. In restricted scenarios, data compression is strongly desired or necessary. A wide diversity of coding methods can be used, depending on the requirements and their priority. In addition, the types and properties of images differ a lot, thus, practical implementation aspects have to be taken into account. The Special Issue paper collection taken as basis of this book touches on all of the aforementioned items to some degree, giving the reader an opportunity to learn about recent developments and research directions in the field of image compression. In particular, lossless and near-lossless compression of multi- and hyperspectral images still remains current, since such images constitute data arrays that are of extremely large size with rich information that can be retrieved from them for various applications. Another important aspect is the impact of lossless compression on image classification and segmentation, where a reasonable compromise between the characteristics of compression and the final tasks of data processing has to be achieved. The problems of data transition from UAV-based acquisition platforms, as well as the use of FPGA and neural networks, have become very important. Finally, attempts to apply compressive sensing approaches in remote sensing image processing with positive outcomes are observed. We hope that readers will find our book useful and interestin
    corecore