75,330 research outputs found

    Distinct neural substrates of visuospatial and verbal-analytic reasoning as assessed by Raven’s Advanced Progressive Matrices

    Get PDF
    Recent studies revealed spontaneous neural activity to be associated with fluid intelligence (gF) which is commonly assessed by Raven's Advanced Progressive Matrices, and embeds two types of reasoning: visuospatial and verbal-analytic reasoning. With resting-state fMRI data, using global brain connectivity (GBC) analysis which averages functional connectivity of a voxel in relation to all other voxels in the brain, distinct neural correlates of these two reasoning types were found. For visuospatial reasoning, negative correlations were observed in both the primary visual cortex (PVC) and the precuneus, and positive correlations were observed in the temporal lobe. For verbal-analytic reasoning, negative correlations were observed in the right inferior frontal gyrus (rIFG), dorsal anterior cingulate cortex and temporoparietal junction, and positive correlations were observed in the angular gyrus. Furthermore, an interaction between GBC value and type of reasoning was found in the PVC, rIFG and the temporal lobe. These findings suggest that visuospatial reasoning benefits more from elaborate perception to stimulus features, whereas verbal-analytic reasoning benefits more from feature integration and hypothesis testing. In sum, the present study offers, for different types of reasoning in gF, first empirical evidence of separate neural substrates in the resting brain

    Synthetic speech detection and audio steganography in VoIP scenarios

    Get PDF
    The distinction between synthetic and human voice uses the techniques of the current biometric voice recognition systems, which prevent that a person’s voice, no matter if with good or bad intentions, can be confused with someone else’s. Steganography gives the possibility to hide in a file without a particular value (usually audio, video or image files) a hidden message in such a way as to not rise suspicion to any external observer. This article suggests two methods, applicable in a VoIP hypothetical scenario, which allow us to distinguish a synthetic speech from a human voice, and to insert within the Comfort Noise a text message generated in the pauses of a voice conversation. The first method takes up the studies already carried out for the Modulation Features related to the temporal analysis of the speech signals, while the second one proposes a technique that derives from the Direct Sequence Spread Spectrum, which consists in distributing the signal energy to hide on a wider band transmission. Due to space limits, this paper is only an extended abstract. The full version will contain further details on our research

    Data-driven multivariate and multiscale methods for brain computer interface

    Get PDF
    This thesis focuses on the development of data-driven multivariate and multiscale methods for brain computer interface (BCI) systems. The electroencephalogram (EEG), the most convenient means to measure neurophysiological activity due to its noninvasive nature, is mainly considered. The nonlinearity and nonstationarity inherent in EEG and its multichannel recording nature require a new set of data-driven multivariate techniques to estimate more accurately features for enhanced BCI operation. Also, a long term goal is to enable an alternative EEG recording strategy for achieving long-term and portable monitoring. Empirical mode decomposition (EMD) and local mean decomposition (LMD), fully data-driven adaptive tools, are considered to decompose the nonlinear and nonstationary EEG signal into a set of components which are highly localised in time and frequency. It is shown that the complex and multivariate extensions of EMD, which can exploit common oscillatory modes within multivariate (multichannel) data, can be used to accurately estimate and compare the amplitude and phase information among multiple sources, a key for the feature extraction of BCI system. A complex extension of local mean decomposition is also introduced and its operation is illustrated on two channel neuronal spike streams. Common spatial pattern (CSP), a standard feature extraction technique for BCI application, is also extended to complex domain using the augmented complex statistics. Depending on the circularity/noncircularity of a complex signal, one of the complex CSP algorithms can be chosen to produce the best classification performance between two different EEG classes. Using these complex and multivariate algorithms, two cognitive brain studies are investigated for more natural and intuitive design of advanced BCI systems. Firstly, a Yarbus-style auditory selective attention experiment is introduced to measure the user attention to a sound source among a mixture of sound stimuli, which is aimed at improving the usefulness of hearing instruments such as hearing aid. Secondly, emotion experiments elicited by taste and taste recall are examined to determine the pleasure and displeasure of a food for the implementation of affective computing. The separation between two emotional responses is examined using real and complex-valued common spatial pattern methods. Finally, we introduce a novel approach to brain monitoring based on EEG recordings from within the ear canal, embedded on a custom made hearing aid earplug. The new platform promises the possibility of both short- and long-term continuous use for standard brain monitoring and interfacing applications

    Temporal evolution of magnetic molecular shocks II. Analytics of the steady state and semi-analytical construction of intermediate ages

    Full text link
    In the first paper of this series (Paper I) we computed time dependent simulations of multifluid shocks with chemistry and a transverse magnetic field frozen in the ions, using an adaptive moving grid. In this paper, we present new analytical results on steady-state molecular shocks. Relationships between density and pressure in the neutral fluid are derived for the cold magnetic precursor, hot magnetic precursor, adiabatic shock front, and the following cooling layer. The compression ratio and temperature behind a fully dissociative adiabatic shock is also derived. To prove that these results may even hold for intermediate ages, we design a test to locally characterise the validity of the steady state equations in a time-dependent shock simulation. Applying this tool to the results of Paper I, we show that most of these shocks (all the stable ones) are indeed in a quasi-steady state at all times, i.e. : a given snapshot is composed of one or more truncated steady shock. Finally, we use this property to produce a construction method of any intermediate time of low velocity shocks (u < 20 km/s) with only a steady-state code. In particular, this method allows one to predict the occurrence of steady CJ-type shocks more accurately than previously proposed criteria.Comment: A&A in pres
    • …
    corecore