1,699 research outputs found

    A study on performance metrics and clustering methods for analyzing behavior in UAV operations

    Get PDF
    Unmanned Aerial Vehicles (UAVs) are starting to provide new possibilities to human societies and their demand is growing according to the new industrial application fields for these revolutionary tools. The current systems are still evolving, specially from an Artificial Intelligence perspective, which is increasing the different tasks that UAVs can perform. However, the current state still requires a strong human supervision. As a consequence, a good preparation for UAV operators is mandatory due to some of their applications might affect human safety. During the training process, it is important to measure the performance of these operators according to different factors that can help to decide what operators are more suitable for different kinds of missions creating operator profiles. Having this goal in mind, this work aims to present an extensive and robust methodology to automatically extract different performance profiles from the training process of operators in an UAV simulation environment. Our method combines the definition of a set of performance metrics with clustering techniques to define operators profiles, ensuring that the behavior discrimination is suitable and consistent

    Analysing temporal performance profiles of UAV operators using time series clustering

    Get PDF
    The continuing growth in the use of Unmanned Aerial Vehicles (UAVs) is causing an important social step forward in the performance of many sensitive tasks, reducing both human and economical risks. The work of UAV operators is a key aspect to guarantee the success of this kind of tasks, and thus UAV operations are studied in many research fields, ranging from human factors to data analysis and machine learning. The present work aims to describe the behaviour of operators over time using a profile-based model where the evolution of the operator performance during a mission is the main unit of measure. In order to compare how different operators act throughout a mission, we describe a methodology based of multivariate-time series clustering to define and analyse a set of representative temporal performance profiles. The proposed methodology is applied in a multi-UAV simulation environment with inexperienced operators, obtaining a fair description of the temporal behavioural patterns followed during the course of the simulation

    Analysing temporal performance profiles of UAV operators using time series clustering

    Get PDF
    The continuing growth in the use of Unmanned Aerial Vehicles (UAVs) is causing an important social step forward in the performance of many sensitive tasks, reducing both human and economical risks. The work of UAV operators is a key aspect to guarantee the success of this kind of tasks, and thus UAV operations are studied in many research fields, ranging from human factors to data analysis and machine learning. The present work aims to describe the behaviour of operators over time using a profile-based model where the evolution of the operator performance during a mission is the main unit of measure. In order to compare how different operators act throughout a mission, we describe a methodology based of multivariate-time series clustering to define and analyse a set of representative temporal performance profiles. The proposed methodology is applied in a multi-UAV simulation environment with inexperienced operators, obtaining a fair description of the temporal behavioural patterns followed during the course of the simulation

    A Logical Approach to Real Options Identification with Application to UAV Systems

    Get PDF
    Complex systems are subject to uncertainties that may lead to suboptimal performance or even catastrophic failure if unmanaged. Uncertainties may be managed through real options that provide a decision maker with the right, but not the obligation, to exercise actions in the future. While real options analysis has traditionally been used to quantify the value of such flexibility, this paper is motivated by the need for a structured approach to identify where real options are or can be embedded for uncertainty management. We introduce a logical model-based approach to identification of real option mechanisms and types, where the mechanism is the enabler of the option, while the type refers to the flexibility provided by the option. First, we extend the classical design structure matrix and the more general multiple-domain matrix (MDM), commonly used in modeling and analyzing interdependencies in complex socio-technical systems, to the more expressive Logical-MDM that supports the representation of flexibility. Second, we show that, in addition to flexibility, two new properties, namely, optionability and realizability, are relevant to the identification of real options. We use the Logical-MDM to estimate flexibility, optionability, and realizability metrics. Finally, we introduce the Real Options Identification (ROI) method based on these metrics, where the identified options are valued using standard real options valuation methods to support decision making under uncertainty. The expressivity of the logic combined with the structure of the dependency model allows the effective representation and identification of mechanisms and types of real options across multiple domains and lifecycle phases of a system. We demonstrate this approach through a series of unmanned air vehicle scenarios

    Computational intelligence based complex adaptive system-of-systems architecture evolution strategy

    Get PDF
    The dynamic planning for a system-of-systems (SoS) is a challenging endeavor. Large scale organizations and operations constantly face challenges to incorporate new systems and upgrade existing systems over a period of time under threats, constrained budget and uncertainty. It is therefore necessary for the program managers to be able to look at the future scenarios and critically assess the impact of technology and stakeholder changes. Managers and engineers are always looking for options that signify affordable acquisition selections and lessen the cycle time for early acquisition and new technology addition. This research helps in analyzing sequential decisions in an evolving SoS architecture based on the wave model through three key features namely; meta-architecture generation, architecture assessment and architecture implementation. Meta-architectures are generated using evolutionary algorithms and assessed using type II fuzzy nets. The approach can accommodate diverse stakeholder views and convert them to key performance parameters (KPP) and use them for architecture assessment. On the other hand, it is not possible to implement such architecture without persuading the systems to participate into the meta-architecture. To address this issue a negotiation model is proposed which helps the SoS manger to adapt his strategy based on system owners behavior. This work helps in capturing the varied differences in the resources required by systems to prepare for participation. The viewpoints of multiple stakeholders are aggregated to assess the overall mission effectiveness of the overarching objective. An SAR SoS example problem illustrates application of the method. Also a dynamic programing approach can be used for generating meta-architectures based on the wave model. --Abstract, page iii

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Using artificial intelligence to support emerging networks management approaches

    Get PDF
    In emergent networks such as Internet of Things (IoT) and 5G applications, network traffic estimation is of great importance to forecast impacts on resource allocation that can influence the quality of service. Besides, controlling the network delay caused with route selection is still a notable challenge, owing to the high mobility of the devices. To analyse the trade-off between traffic forecasting accuracy and the complexity of artificial intelligence models used in this scenario, this work first evaluates the behavior of several traffic load forecasting models in a resource sharing environment. Moreover, in order to alleviate the routing problem in highly dynamic ad-hoc networks, this work also proposes a machine-learning-based routing scheme to reduce network delay in the high-mobility scenarios of flying ad-hoc networks, entitled Q-FANET. The performance of this new algorithm is compared with other methods using the WSNet simulator. With the obtained complexity analysis and the performed simulations, on one hand the best traffic load forecast model can be chosen, and on the other, the proposed routing solution presents lower delay, higher packet delivery ratio and lower jitter in highly dynamic networks than existing state-of-art methods

    Assessment of the State-of-the-Art of System-Wide Safety and Assurance Technologies

    Get PDF
    Since its initiation, the System-wide Safety Assurance Technologies (SSAT) Project has been focused on developing multidisciplinary tools and techniques that are verified and validated to ensure prevention of loss of property and life in NextGen and enable proactive risk management through predictive methods. To this end, four technical challenges have been listed to help realize the goals of SSAT, namely (i) assurance of flight critical systems, (ii) discovery of precursors to safety incidents, (iii) assuring safe human-systems integration, and (iv) prognostic algorithm design for safety assurance. The objective of this report is to provide an extensive survey of SSAT-related research accomplishments by researchers within and outside NASA to get an understanding of what the state-of-the-art is for technologies enabling each of the four technical challenges. We hope that this report will serve as a good resource for anyone interested in gaining an understanding of the SSAT technical challenges, and also be useful in the future for project planning and resource allocation for related research
    • …
    corecore