7,198 research outputs found

    Designing user interaction using gesture and speech for mixed reality interface

    Get PDF
    Mixed Reality (MR) is the next evolution of humans interacting with computer as MR can combine the physical environment and digital environment and making them coexist with each other [1]. Interaction is still a valid research area in MR, and this paper focuses on interaction rather than other research areas such as tracking, calibration, and display [2] because the current interaction technique still not intuitive enough to let the user interact with the computer. This paper explores the user interaction using gesture and speech interaction for 3D object manipulation in mixed reality environment. The paper explains the design stage that involves interaction using gesture and speech inputs to enhance user experience in MR workspace. After acquiring gesture input and speech commands, MR prototype is proposed to integrate the interaction technique using gesture and speech. The paper concludes with results and discussion

    Spatial Interaction for Immersive Mixed-Reality Visualizations

    Get PDF
    Growing amounts of data, both in personal and professional settings, have caused an increased interest in data visualization and visual analytics. Especially for inherently three-dimensional data, immersive technologies such as virtual and augmented reality and advanced, natural interaction techniques have been shown to facilitate data analysis. Furthermore, in such use cases, the physical environment often plays an important role, both by directly influencing the data and by serving as context for the analysis. Therefore, there has been a trend to bring data visualization into new, immersive environments and to make use of the physical surroundings, leading to a surge in mixed-reality visualization research. One of the resulting challenges, however, is the design of user interaction for these often complex systems. In my thesis, I address this challenge by investigating interaction for immersive mixed-reality visualizations regarding three core research questions: 1) What are promising types of immersive mixed-reality visualizations, and how can advanced interaction concepts be applied to them? 2) How does spatial interaction benefit these visualizations and how should such interactions be designed? 3) How can spatial interaction in these immersive environments be analyzed and evaluated? To address the first question, I examine how various visualizations such as 3D node-link diagrams and volume visualizations can be adapted for immersive mixed-reality settings and how they stand to benefit from advanced interaction concepts. For the second question, I study how spatial interaction in particular can help to explore data in mixed reality. There, I look into spatial device interaction in comparison to touch input, the use of additional mobile devices as input controllers, and the potential of transparent interaction panels. Finally, to address the third question, I present my research on how user interaction in immersive mixed-reality environments can be analyzed directly in the original, real-world locations, and how this can provide new insights. Overall, with my research, I contribute interaction and visualization concepts, software prototypes, and findings from several user studies on how spatial interaction techniques can support the exploration of immersive mixed-reality visualizations.Zunehmende Datenmengen, sowohl im privaten als auch im beruflichen Umfeld, fĂŒhren zu einem zunehmenden Interesse an Datenvisualisierung und visueller Analyse. Insbesondere bei inhĂ€rent dreidimensionalen Daten haben sich immersive Technologien wie Virtual und Augmented Reality sowie moderne, natĂŒrliche Interaktionstechniken als hilfreich fĂŒr die Datenanalyse erwiesen. DarĂŒber hinaus spielt in solchen AnwendungsfĂ€llen die physische Umgebung oft eine wichtige Rolle, da sie sowohl die Daten direkt beeinflusst als auch als Kontext fĂŒr die Analyse dient. Daher gibt es einen Trend, die Datenvisualisierung in neue, immersive Umgebungen zu bringen und die physische Umgebung zu nutzen, was zu einem Anstieg der Forschung im Bereich Mixed-Reality-Visualisierung gefĂŒhrt hat. Eine der daraus resultierenden Herausforderungen ist jedoch die Gestaltung der Benutzerinteraktion fĂŒr diese oft komplexen Systeme. In meiner Dissertation beschĂ€ftige ich mich mit dieser Herausforderung, indem ich die Interaktion fĂŒr immersive Mixed-Reality-Visualisierungen im Hinblick auf drei zentrale Forschungsfragen untersuche: 1) Was sind vielversprechende Arten von immersiven Mixed-Reality-Visualisierungen, und wie können fortschrittliche Interaktionskonzepte auf sie angewendet werden? 2) Wie profitieren diese Visualisierungen von rĂ€umlicher Interaktion und wie sollten solche Interaktionen gestaltet werden? 3) Wie kann rĂ€umliche Interaktion in diesen immersiven Umgebungen analysiert und ausgewertet werden? Um die erste Frage zu beantworten, untersuche ich, wie verschiedene Visualisierungen wie 3D-Node-Link-Diagramme oder Volumenvisualisierungen fĂŒr immersive Mixed-Reality-Umgebungen angepasst werden können und wie sie von fortgeschrittenen Interaktionskonzepten profitieren. FĂŒr die zweite Frage untersuche ich, wie insbesondere die rĂ€umliche Interaktion bei der Exploration von Daten in Mixed Reality helfen kann. Dabei betrachte ich die Interaktion mit rĂ€umlichen GerĂ€ten im Vergleich zur Touch-Eingabe, die Verwendung zusĂ€tzlicher mobiler GerĂ€te als Controller und das Potenzial transparenter Interaktionspanels. Um die dritte Frage zu beantworten, stelle ich schließlich meine Forschung darĂŒber vor, wie Benutzerinteraktion in immersiver Mixed-Reality direkt in der realen Umgebung analysiert werden kann und wie dies neue Erkenntnisse liefern kann. Insgesamt trage ich mit meiner Forschung durch Interaktions- und Visualisierungskonzepte, Software-Prototypen und Ergebnisse aus mehreren Nutzerstudien zu der Frage bei, wie rĂ€umliche Interaktionstechniken die Erkundung von immersiven Mixed-Reality-Visualisierungen unterstĂŒtzen können

    Barehand Mode Switching in Touch and Mid-Air Interfaces

    Get PDF
    Raskin defines a mode as a distinct setting within an interface where the same user input will produce results different to those it would produce in other settings. Most interfaces have multiple modes in which input is mapped to different actions, and, mode-switching is simply the transition from one mode to another. In touch interfaces, the current mode can change how a single touch is interpreted: for example, it could draw a line, pan the canvas, select a shape, or enter a command. In Virtual Reality (VR), a hand gesture-based 3D modelling application may have different modes for object creation, selection, and transformation. Depending on the mode, the movement of the hand is interpreted differently. However, one of the crucial factors determining the effectiveness of an interface is user productivity. Mode-switching time of different input techniques, either in a touch interface or in a mid-air interface, affects user productivity. Moreover, when touch and mid-air interfaces like VR are combined, making informed decisions pertaining to the mode assignment gets even more complicated. This thesis provides an empirical investigation to characterize the mode switching phenomenon in barehand touch-based and mid-air interfaces. It explores the potential of using these input spaces together for a productivity application in VR. And, it concludes with a step towards defining and evaluating the multi-faceted mode concept, its characteristics and its utility, when designing user interfaces more generally

    Pre-define rotation amplitudes object rotation in handheld augmented reality

    Get PDF
    Interaction is one of the important topics to be discussed since it includes the interface where the end-user communicates with the augmented reality (AR) system. In handheld AR interface, the traditional interaction techniques are not suitable for some AR applications due to the different attributes of handheld devices that always refer to smartphones and tablets. Currently interaction techniques in handheld AR are known as touch-based technique, mid-air gesture-based technique and device-based technique that can led to a wide discussion in related research areas. However, this paper will focus to discover the device-based interaction technique because it has proven in the previous studies to be more suitable and robust in several aspects. A novel device-based 3D object rotation technique is proposed to solve the current problem in performing 3DOF rotation of 3D object. The goal is to produce a precise and faster 3D object rotation. Therefore, the determination of the rotation amplitudes per second is required before the fully implementation. This paper discusses the implementation in depth and provides a guideline for those who works in related to device-based interaction

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this ïŹeld. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research

    Spherical tangible user interfaces in mixed reality

    Get PDF
    The popularity of virtual reality (VR) and augmented reality (AR) has grown rapidly in recent years, both in academia and commercial applications. This is rooted in technological advances and affordable head-mounted displays (HMDs). Whether in games or professional applications, HMDs allow for immersive audio-visual experiences that transport users to compelling digital worlds or convincingly augment the real world. However, as true to life as these experiences have become in a visual and auditory sense, the question remains how we can model interaction with these virtual environments in an equally natural way. Solutions providing intuitive tangible interaction would bear the potential to fundamentally make the mixed reality (MR) spectrum more accessible, especially for novice users. Research on tangible user interfaces (TUIs) has pursued this goal by coupling virtual to real-world objects. Tangible interaction has been shown to provide significant advantages for numerous use cases. Spherical tangible user interfaces (STUIs) present a special case of these devices, mainly due to their ability to fully embody any spherical virtual content. In general, spherical devices increasingly transition from mere technology demonstrators to usable multi-modal interfaces. For this dissertation, we explore the application of STUIs in MR environments primarily by comparing them to state-of-the-art input techniques in four different contexts. Thus, investigating the questions of embodiment, overall user performance, and the ability of STUIs relying on their shape alone to support complex interaction techniques. First, we examine how spherical devices can embody immersive visualizations. In an initial study, we test the practicality of a tracked sphere embodying three kinds of visualizations. We examine simulated multi-touch interaction on a spherical surface and compare two different sphere sizes to VR controllers. Results confirmed our prototype's viability and indicate improved pattern recognition and advantages for the smaller sphere. Second, to further substantiate VR as a prototyping technology, we demonstrate how a large tangible spherical display can be simulated in VR. We show how VR can fundamentally extend the capabilities of real spherical displays by adding physical rotation to a simulated multi-touch surface. After a first study evaluating the general viability of simulating such a display in VR, our second study revealed the superiority of a rotating spherical display. Third, we present a concept for a spherical input device for tangible AR (TAR). We show how such a device can provide basic object manipulation capabilities utilizing two different modes and compare it to controller techniques with increasing hardware complexity. Our results show that our button-less sphere-based technique is only outperformed by a mode-less controller variant that uses physical buttons and a touchpad. Fourth, to study the intrinsic problem of VR locomotion, we explore two opposing approaches: a continuous and a discrete technique. For the first, we demonstrate a spherical locomotion device supporting two different locomotion paradigms that propel a user's first-person avatar accordingly. We found that a position control paradigm applied to a sphere performed mostly superior in comparison to button-supported controller interaction. For discrete locomotion, we evaluate the concept of a spherical world in miniature (SWIM) used for avatar teleportation in a large virtual environment. Results showed that users subjectively preferred the sphere-based technique over regular controllers and on average, achieved lower task times and higher accuracy. To conclude the thesis, we discuss our findings, insights, and subsequent contribution to our central research questions to derive recommendations for designing techniques based on spherical input devices and an outlook on the future development of spherical devices in the mixed reality spectrum.Die PopularitĂ€t von Virtual Reality (VR) und Augmented Reality (AR) hat in den letzten Jahren rasant zugenommen, sowohl im akademischen Bereich als auch bei kommerziellen Anwendungen. Dies ist in erster Linie auf technologische Fortschritte und erschwingliche Head-Mounted Displays (HMDs) zurĂŒckzufĂŒhren. Ob in Spielen oder professionellen Anwendungen, HMDs ermöglichen immersive audiovisuelle Erfahrungen, die uns in fesselnde digitale Welten versetzen oder die reale Welt ĂŒberzeugend erweitern. Doch so lebensecht diese Erfahrungen in visueller und auditiver Hinsicht geworden sind, so bleibt doch die Frage, wie die Interaktion mit diesen virtuellen Umgebungen auf ebenso natĂŒrliche Weise gestaltet werden kann. Lösungen, die eine intuitive, greifbare Interaktion ermöglichen, hĂ€tten das Potenzial, das Spektrum der Mixed Reality (MR) fundamental zugĂ€nglicher zu machen, insbesondere fĂŒr Unerfahrene. Die Forschung an Tangible User Interfaces (TUIs) hat dieses Ziel durch das Koppeln virtueller und realer Objekte verfolgt und so hat sich gezeigt, dass greifbare Interaktion fĂŒr zahlreiche AnwendungsfĂ€lle signifikante Vorteile bietet. Spherical Tangible User Interfaces (STUIs) stellen einen Spezialfall von greifbaren Interfaces dar, insbesondere aufgrund ihrer FĂ€higkeit, beliebige sphĂ€rische virtuelle Inhalte vollstĂ€ndig verkörpern zu können. Generell entwickeln sich sphĂ€rische GerĂ€te zunehmend von reinen Technologiedemonstratoren zu nutzbaren multimodalen Instrumenten, die auf eine breite Palette von Interaktionstechniken zurĂŒckgreifen können. Diese Dissertation untersucht primĂ€r die Anwendung von STUIs in MR-Umgebungen durch einen Vergleich mit State-of-the-Art-Eingabetechniken in vier verschiedenen Kontexten. Dies ermöglicht die Erforschung der Bedeutung der Verkörperung virtueller Objekte, der Benutzerleistung im Allgemeinen und der FĂ€higkeit von STUIs, die sich lediglich auf ihre Form verlassen, komplexe Interaktionstechniken zu unterstĂŒtzen. ZunĂ€chst erforschen wir, wie sphĂ€rische GerĂ€te immersive Visualisierungen verkörpern können. Eine erste Studie ergrĂŒndet die Praxistauglichkeit einer einfach konstruierten, getrackten Kugel, die drei Arten von Visualisierungen verkörpert. Wir testen simulierte Multi-Touch-Interaktion auf einer sphĂ€rischen OberflĂ€che und vergleichen zwei KugelgrĂ¶ĂŸen mit VR-Controllern. Die Ergebnisse bestĂ€tigten die Praxistauglichkeit des Prototyps und deuten auf verbesserte Mustererkennung sowie Vorteile fĂŒr die kleinere Kugel hin. Zweitens, um die ValiditĂ€t von VR als Prototyping-Technologie zu bekrĂ€ftigen, demonstrieren wir, wie ein großes, anfassbares sphĂ€risches Display in VR simuliert werden kann. Es zeigt sich, wie VR die Möglichkeiten realer sphĂ€rischer Displays substantiell erweitern kann, indem eine simulierte Multi-Touch-OberflĂ€che um die FĂ€higkeit der physischen Rotation ergĂ€nzt wird. Nach einer ersten Studie, die die generelle Machbarkeit der Simulation eines solchen Displays in VR evaluiert, zeigte eine zweite Studie die Überlegenheit des drehbaren sphĂ€rischen Displays. Drittens prĂ€sentiert diese Arbeit ein Konzept fĂŒr ein sphĂ€risches EingabegerĂ€t fĂŒr Tangible AR (TAR). Wir zeigen, wie ein solches Werkzeug grundlegende FĂ€higkeiten zur Objektmanipulation unter Verwendung von zwei verschiedenen Modi bereitstellen kann und vergleichen es mit Eingabetechniken deren HardwarekomplexitĂ€t zunehmend steigt. Unsere Ergebnisse zeigen, dass die kugelbasierte Technik, die ohne Knöpfe auskommt, nur von einer Controller-Variante ĂŒbertroffen wird, die physische Knöpfe und ein Touchpad verwendet und somit nicht auf unterschiedliche Modi angewiesen ist. Viertens, um das intrinsische Problem der Fortbewegung in VR zu erforschen, untersuchen wir zwei gegensĂ€tzliche AnsĂ€tze: eine kontinuierliche und eine diskrete Technik. FĂŒr die erste prĂ€sentieren wir ein sphĂ€risches EingabegerĂ€t zur Fortbewegung, das zwei verschiedene Paradigmen unterstĂŒtzt, die einen First-Person-Avatar entsprechend bewegen. Es zeigte sich, dass das Paradigma der direkten Positionssteuerung, angewandt auf einen Kugel-Controller, im Vergleich zu regulĂ€rer Controller-Interaktion, die zusĂ€tzlich auf physische Knöpfe zurĂŒckgreifen kann, meist besser abschneidet. Im Bereich der diskreten Fortbewegung evaluieren wir das Konzept einer kugelförmingen Miniaturwelt (Spherical World in Miniature, SWIM), die fĂŒr die Avatar-Teleportation in einer großen virtuellen Umgebung verwendet werden kann. Die Ergebnisse zeigten eine subjektive Bevorzugung der kugelbasierten Technik im Vergleich zu regulĂ€ren Controllern und im Durchschnitt eine schnellere Lösung der Aufgaben sowie eine höhere Genauigkeit. Zum Abschluss der Arbeit diskutieren wir unsere Ergebnisse, Erkenntnisse und die daraus resultierenden BeitrĂ€ge zu unseren zentralen Forschungsfragen, um daraus Empfehlungen fĂŒr die Gestaltung von Techniken auf Basis kugelförmiger EingabegerĂ€te und einen Ausblick auf die mögliche zukĂŒnftige Entwicklung sphĂ€rischer EingabegrĂ€te im Mixed-Reality-Bereich abzuleiten
    • 

    corecore