353 research outputs found

    MLCAD: A Survey of Research in Machine Learning for CAD Keynote Paper

    Get PDF

    Machine Learning Strategy for Predicting Process Variability Effect in Ultra-scaled GAA FET and 3D NAND Flash Devices

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2020. 8. ์‹ ํ˜•์ฒ .๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋‹ค์–‘ํ•œ ๊ณต์ • ๋ณ€๋™ ์š”์ธ์— ์˜ํ•œ ์˜ํ–ฅ์„ ์ดˆ์†Œํ˜• GAA FET ์†Œ์ž ๋ฐ 3์ฐจ์› NAND Flash Memory ์†Œ์ž์—์„œ ์ •ํ™•ํ•˜๊ฒŒ ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•œ ๊ธฐ๊ณ„ ํ•™์Šต ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•˜์˜€๋‹ค. ๊ณต์ • ๋ณ€๋™์„ฑ ์š”์ธ์— ์˜ํ•œ ์˜ํ–ฅ์€ ๋กœ์ง ์†Œ์ž์™€ ๋ฉ”๋ชจ๋ฆฌ ์†Œ์ž์—์„œ ์—ฌ๋Ÿฌ๊ฐ€์ง€ ์‹ ๋ขฐ์„ฑ ๋ฌธ์ œ์˜ ์›์ธ์œผ๋กœ ์ž‘์šฉํ•˜๋ฉฐ ํŠนํžˆ, ๋กœ์ง ๋ฐ ๋ฉ”๋ชจ๋ฆฌ ์†Œ์ž์˜ ์ˆ˜์œจ์„ ๊ฒฐ์ •ํ•˜๋Š” ๋งˆ์ง„์„ ๊ฐ์†Œ์‹œ์ผœ ์ •ํ™•ํ•œ ์˜ˆ์ธก ๋ฐ ์ œ์–ด๊ฐ€ ํ•„์ˆ˜์ ์ด๋‹ค. ๊ธฐ๊ณ„ํ•™์Šต ์‹œ์Šคํ…œ์€ ํฌ๊ฒŒ ๋น„์ง€๋„์  ํ•™์Šต(=Unsupervised Learning), ์ง€๋„์  ํ•™์Šต(=Supervised Learning), ๊ฐ•ํ™” ํ•™์Šต(=Reinforcement Learning)์˜ 3๊ฐ€์ง€ ๊ณ„์—ด๋กœ ๊ตฌ๋ถ„๋œ๋‹ค. ์ด ์ค‘, ์†Œ์ž ํŠน์„ฑ์„ ๋ถ„์„ํ•˜๊ณ  ๋ณ€๋™์„ฑ ์˜ํ–ฅ ์˜ˆ์ธก์„ ๋ชฉ์ ์œผ๋กœ ํ•˜๋Š” ๊ฒฝ์šฐ ์ •ํ•ด์ง„ ์ž…์ถœ๋ ฅ(Training data) ๊ฐ’์— ๊ทผ๊ฑฐํ•˜์—ฌ ํšŒ๊ท€๋ก ์  ๋ฐฉ๋ฒ•์œผ๋กœ ์˜ˆ์ธก ๋ชจ๋ธ์„ ํ•™์Šต์‹œํ‚ค๋Š” ์ง€๋„์  ํ•™์Šต ๊ณ„์—ด์˜ ๊ธฐ๊ณ„ํ•™์Šต ์‹œ์Šคํ…œ์ด ๊ฐ€์žฅ ์ ํ•ฉํ•œ ๋ฐฉ๋ฒ•์ด๋‹ค. ์ง€๋„์  ํ•™์Šต ๊ณ„์—ด์˜ ๊ธฐ๊ณ„ํ•™์Šต ์‹œ์Šคํ…œ์€ ๋‹ค์–‘ํ•œ ๋ณ€๋™์„ฑ ์š”์†Œ์— ๋Œ€ํ•œ ๋‹ค๊ฐ๋„์˜ ์†Œ์ž ํŠน์„ฑ์„ ์˜ˆ์ธกํ•˜์—ฌ์•ผ ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋‹ค์ค‘ ๋…ธ๋“œ(=Multi-Node, MN)๋ฅผ ๊ฐ–๋Š” ๋ณต์žกํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜(e.g., Artificial neural networks)๊ธฐ๋ฐ˜์˜ ๋‹ค์ค‘ ์ž…๋ ฅ-๋‹ค์ค‘ ์ถœ๋ ฅ(=Multi-Input/Multi-Output, MIMO)์„ ํ†ตํ•ด ์ œ์‹œ๋˜์—ˆ๋‹ค. ๊ธฐ๊ณ„ํ•™์Šต ์‹œ์Šคํ…œ์˜ ์ดˆ๊ธฐ ๋‹จ๊ณ„๋กœ ๋‹จ์ผ ํŠธ๋ Œ์ง€์Šคํ„ฐ์˜ ๋ณ€๋™์„ฑ ์š”์ธ์„ ์„ ํ–‰ ๋ถ„์„ํ•˜์˜€๋‹ค. ์ดˆ์†Œํ˜• GAA (Gall-All-Around) VFET (Vertical FET) ๋””๋ฐ”์ด์Šค์˜ ํ”„๋กœ์„ธ์Šค ๋ณ€๋™ (PV)์„ ์‚ฌ์šฉํ•˜์—ฌ ์ฃผ์š” ์ „๊ธฐ ๋งค๊ฐœ ๋ณ€์ˆ˜์˜ ๋ณ€๋™์„ ์˜ˆ์ธกํ•˜๋Š” ์ •ํ™•ํ•˜๊ณ  ํšจ์œจ์ ์ธ ๊ธฐ๊ณ„ ํ•™์Šต (ML) ๋ฐฉ์‹์„ ์ œ์‹œํ•˜์˜€๋‹ค. ์ œ์•ˆ ๋œ ๊ธฐ๊ณ„ ํ•™์Šต ์ ‘๊ทผ๋ฒ•์€ 3D ํ™•๋ฅ ๋ก ์  TCAD ์‹œ๋ฎฌ๋ ˆ์ด์…˜๊ณผ ๋น„๊ตํ–ˆ์„ ๋•Œ ๋™์ผํ•œ ์ •ํ™•๋„์™€ ์šฐ์ˆ˜ํ•œ ํšจ์œจ์„ฑ์„ ๋ณด์—ฌ์ค€๋‹ค. ์ธ๊ณต ์‹ ๊ฒฝ ๋„คํŠธ์›Œํฌ ๊ธฐ๋ฐ˜ (ANN) ๊ธฐ๊ณ„ ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ MIMO (Multi-input-Multi-Output) ์˜ˆ์ธก์„ ๋งค์šฐ ํšจ๊ณผ์ ์œผ๋กœ ์ˆ˜ํ–‰ ํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ธฐ๊ณ„ ํ•™์Šต ์‹œ์Šคํ…œ์˜ ๋ฐœ์ „๋œ ๋‹จ๊ณ„๋กœ์จ, 3D NAND ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ์˜ ์ฃผ์š” ์ „๊ธฐ ๋งค๊ฐœ ๋ณ€์ˆ˜์˜ ๋ณ€ํ™”๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ๊ฐ€๋ณ€์„ฑ ์ธ์‹ ๊ธฐ๊ณ„ ํ•™์Šต ์‹œ์Šคํ…œ์„ ์ œ์•ˆํ•œ๋‹ค. ์šฐ๋ฆฌ๋Š” ์ตœ์ดˆ๋กœ ์ธ๊ณต ์‹ ๊ฒฝ ๋„คํŠธ์›Œํฌ (ANN) ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ธฐ๋ฐ˜ ML ์‹œ์Šคํ…œ์˜ ์˜ˆ์ธก ์˜ํ–ฅ ์š”์ธ ํšจ๊ณผ์˜ ์ •ํ™•์„ฑ, ํšจ์œจ์„ฑ ๋ฐ ์ผ๋ฐ˜์„ฑ์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ๋”ฐ๋ผ์„œ ๋‹ค์–‘ํ•œ ๋ณ€๋™ ์›์ธ์œผ๋กœ ์ธํ•œ ์žฅ์น˜์˜ ์ฃผ์š” ์ „๊ธฐ์  ํŠน์„ฑ ๋ณ€ํ™”๊ฐ€ ๋™์‹œ์— ํ†ตํ•ฉ์ ์œผ๋กœ ์˜ˆ์ธก๋œ๋‹ค. ์ด ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ 3D ํ™•๋ฅ ๋ก ์  TCAD ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ๋ฒค์น˜๋งˆํ‚นํ•˜์—ฌ 1 % ๋ฏธ๋งŒ์˜ ์˜ˆ์ธก ์˜ค๋ฅ˜์œจ๊ณผ 80 % ์ด์ƒ์˜ ๊ณ„์‚ฐ ๋น„์šฉ ์ ˆ๊ฐ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ๋˜ํ•œ, ์ธต์ˆ˜๊ฐ€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ๋‹ค์–‘ํ•œ ๊ตฌ์กฐ ์กฐ๊ฑด์„ ๊ฐ–๋Š” 3 ์ฐจ์› ๋‚ธ๋“œ ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ์˜ ๋™์ž‘ ํŠน์„ฑ์„ ์˜ˆ์ธกํ•จ์œผ๋กœ์จ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ผ๋ฐ˜์„ฑ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค.This paper presents a Machine Learning (ML) approach for accurately predicting the effects of various process variation sources on ultra-scaled GAA FET devices and 3D NAND Flash Memories. The effects of process variability sources cause various reliability problems in logic and memory devices. In particular, accurate prediction and control is essential by reducing the margin that determine the yield of logic and memory devices. The machine learning system is largely divided into three classes: Unsupervised Learning, Supervised Learning, and Reinforcement Learning. Among them, a supervised learning series machine learning system, which uses a regression method to train predictive models based on input and output (Training data) values, is the most suitable method for analyzing device characteristics and predicting variability effects. Since the machine learning system of the supervised learning series needs to predict the characteristics of various devices of various variability sources, it is possible to use multiple input-multiple outputs (MIMO) based on complex algorithms (artificial neural networks) with multiple nodes (MN). In the early stages of the ML system, the variability sources of a single transistor is analyzed. We propose an accurate and efficient machine learning approach which predicts variations in key electrical parameters using process variations (PV) from ultra-scaled gate-all-around (GAA) vertical FET (VFET) devices. The proposed machine learning approach shows the same accuracy and good efficiency when compared to 3D stochastic Technology-CAD (TCAD) simulation. Artificial Neural Network Based (ANN) machine learning algorithm can perform Multi-input-Multi-Output prediction very effectively. As an advanced stage of the ML system, we propose a variability-aware ML approach that predicts variations in the key electrical parameters of 3D NAND Flash memories. For the first time, we have verified the accuracy, efficiency, and generality of the predictive impact factor effects of ANN algorithm-based ML systems. ANN-based ML algorithms can be very effective in MIMO prediction. Therefore, changes in the key electrical characteristics of the device caused by various sources of variability are simultaneously and integrally predicted. This algorithm benchmarks 3D stochastic TCAD simulation, showing a prediction error rate of less than 1% as well as a calculation cost reduction of over 80%. In addition, the generality of the algorithm is confirmed by predicting the operating characteristics of the 3D NAND Flash memory with various structural conditions as the number of layers increases.Chapter 1. Introduction 1 1.1. Emergence of Ultra-scaled 3D Device 1 1.2. Increasing Difficulty of Interpreting Variability Issues 5 1.3. Need for Accurate Variability Prediction 10 Chapter 2. Machine Learning System 15 2.1. Introduction 15 2.2. Analysis of Variability through TCAD Simulation 17 2.3. Structure of Machine Learning Algorithm 25 2.4. Summary 35 Chapter 3. Prediction of Process Variation Effect for Ultra-scaled GAA Vertical FET Devices 40 3.1. Introduction 40 3.2 Simulation Structure and Methodology 42 3.3. Results and Discussion 45 3.4. Summary 58 Chapter 4. Prediction of Process Variation Effect for 3D NAND Flash Memories 63 4.1. Introduction 63 4.2 Simulation Structure and Methodology 64 4.3. Results and Discussion 74 4.4. Summary 99 Chapter 5. Conclusion 104 Bibliography 106 Abstract in Korean 111Docto

    Minimizing Peak Temperature for Pipelined Hard Real-time Systems

    Full text link
    • โ€ฆ
    corecore