5,624 research outputs found

    Financial Markets Analysis by Probabilistic Fuzzy Modelling

    Get PDF
    For successful trading in financial markets, it is important to develop financial models where one can identify different states of the market for modifying one???s actions. In this paper, we propose to use probabilistic fuzzy systems for this purpose. We concentrate on Takagi???Sugeno (TS) probabilistic fuzzy systems that combine interpretability of fuzzy systems with the statistical properties of probabilistic systems. We start by recapitulating the general architecture of TS probabilistic fuzzy rule-based systems and summarize the corresponding reasoning schemes. We mention how probabilities can be estimated from a given data set and how a probability distribution can be approximated by a fuzzy histogram. We apply our methodology for financial time series analysis and demonstrate how a probabilistic TS fuzzy system can be identified, assuming that a linguistic term set is given. We illustrate the interpretability of such a system by inspecting the rule bases of our models.time series analysis;data-driven design;fuzzy reasoning;fuzzy rule base;probabilistic fuzzy systems

    A Fuzzy Logic-Based System for Soccer Video Scenes Classification

    Get PDF
    Massive global video surveillance worldwide captures data but lacks detailed activity information to flag events of interest, while the human burden of monitoring video footage is untenable. Artificial intelligence (AI) can be applied to raw video footage to identify and extract required information and summarize it in linguistic formats. Video summarization automation usually involves text-based data such as subtitles, segmenting text and semantics, with little attention to video summarization in the processing of video footage only. Classification problems in recorded videos are often very complex and uncertain due to the dynamic nature of the video sequence and light conditions, background, camera angle, occlusions, indistinguishable scene features, etc. Video scene classification forms the basis of linguistic video summarization, an open research problem with major commercial importance. Soccer video scenes present added challenges due to specific objects and events with similar features (e.g. “people” include audiences, coaches, and players), as well as being constituted from a series of quickly changing and dynamic frames with small inter-frame variations. There is an added difficulty associated with the need to have light weight video classification systems working in real time with massive data sizes. In this thesis, we introduce a novel system based on Interval Type-2 Fuzzy Logic Classification Systems (IT2FLCS) whose parameters are optimized by the Big Bang–Big Crunch (BB-BC) algorithm, which allows for the automatic scenes classification using optimized rules in broadcasted soccer matches video. The type-2 fuzzy logic systems would be unequivocal to present a highly interpretable and transparent model which is very suitable for the handling the encountered uncertainties in video footages and converting the accumulated data to linguistic formats which can be easily stored and analysed. Meanwhile the traditional black box techniques, such as support vector machines (SVMs) and neural networks, do not provide models which could be easily analysed and understood by human users. The BB-BC optimization is a heuristic, population-based evolutionary approach which is characterized by the ease of implementation, fast convergence and low computational cost. We employed the BB-BC to optimize our system parameters of fuzzy logic membership functions and fuzzy rules. Using the BB-BC we are able to balance the system transparency (through generating a small rule set) together with increasing the accuracy of scene classification. Thus, the proposed fuzzy-based system allows achieving relatively high classification accuracy with a small number of rules thus increasing the system interpretability and allowing its real-time processing. The type-2 Fuzzy Logic Classification System (T2FLCS) obtained 87.57% prediction accuracy in the scene classification of our testing group data which is better than the type-1 fuzzy classification system and neural networks counterparts. The BB-BC optimization algorithms decrease the size of rule bases both in T1FLCS and T2FLCS; the T2FLCS finally got 85.716% with reduce rules, outperforming the T1FLCS and neural network counterparts, especially in the “out-of-range data” which validates the T2FLCSs capability to handle the high level of faced uncertainties. We also presented a novel approach based on the scenes classification system combined with the dynamic time warping algorithm to implement the video events detection for real world processing. The proposed system could run on recorded or live video clips and output a label to describe the event in order to provide the high level summarization of the videos to the user

    Efficient image retrieval by fuzzy rules from boosting and metaheuristic

    Get PDF
    Fast content-based image retrieval is still a challenge for computer systems. We present a novel method aimed at classifying images by fuzzy rules and local image features. The fuzzy rule base is generated in the first stage by a boosting procedure. Boosting meta-learning is used to find the most representative local features. We briefly explore the utilization of metaheuristic algorithms for the various tasks of fuzzy systems optimization. We also provide a comprehensive description of the current best-performing DISH algorithm, which represents a powerful version of the differential evolution algorithm with effective embedded mechanisms for stronger exploration and preservation of the population diversity, designed for higher dimensional and complex optimization tasks. The algorithm is used to fine-tune the fuzzy rule base. The fuzzy rules can also be used to create a database index to retrieve images similar to the query image fast. The proposed approach is tested on a state-of-the-art image dataset and compared with the bag-of-features image representation model combined with the Support Vector Machine classification. The novel method gives a better classification accuracy, and the time of the training and testing process is significantly shorter. © 2020 Marcin Korytkowski et al., published by Sciendo.program of the Polish Minister of Science and Higher Education under the name "Regional Initiative of Excellence" in the years 2019-2022 [020/RID/2018/19

    Incorporating spatial relationship information in signal-to-text processing

    Get PDF
    This dissertation outlines the development of a signal-to-text system that incorporates spatial relationship information to generate scene descriptions. Existing signal-to-text systems generate accurate descriptions in regards to information contained in an image. However, to date, no signalto- text system incorporates spatial relationship information. A survey of related work in the fields of object detection, signal-to-text, and spatial relationships in images is presented first. Three methodologies followed by evaluations were conducted in order to create the signal-to-text system: 1) generation of object localization results from a set of input images, 2) derivation of Level One Summaries from an input image, and 3) inference of Level Two Summaries from the derived Level One Summaries. Validation processes are described for the second and third evaluations, as the first evaluation has been previously validated in the related original works. The goal of this research is to show that a signal-to-text system that incorporates spatial information results in more informative descriptions of the content contained in an image. An additional goal of this research is to demonstrate the signal-to-text system can be easily applied to additional data sets, other than the sets used to train the system, and achieve similar results to the training sets. To achieve this goal, a validation study was conducted and is presented to the reader

    Prediction of monsoon rainfall for a mesoscale Indian catchment based on stochastical downscaling and objective circulation patterns

    No full text
    International audienceIn this study a stochastical approach for generating rainfall time series based on objective circulation patterns (CP is applied to the mesoscale Anas catchment in North West India. This CP based approach was developed and successfully applied in the humid and temperate climate of Central Europe. The objective of the study was to find out whether this approach is transferable to a catchment in North West India with a totally different semi arid climate. For the Anas catchment it was possible to identify a CP classification scheme consisting of 12 CPs defined in a window between 5° N 40° E and 35° N 95° E, which explained the space-time variability of observed rainfall at 10 stations in the Anas catchment. Based on the classification scheme, NCAR pressure data from 500 hPa level were classified into a CP time series for the period of 1964?1994, which was in turn used as meteorological forcing for multivariate stochastical rainfall simulations with a daily time step. On the monthly time scale the model performed well. Except for stations Udaigarh and Bhabra the average annual cycle of monthly rainfall and rainy days in a month was matched well. The frequency distributions of monthly rainfall at different stations were also captured well. Correlation coefficients between simulated and observed monthly rainfall were larger than 0.85 at each station. Within a long term simulation of 30 years the model yielded promising predictions for monthly as well as for seasonal rainfall totals, but showed also clear deficiencies in capturing the very extremes and inter-decadal variability of monsoon strength. In this respect, the introduction of additional predictors such as SST anomalies and wind direction classes promised the most substantial model improvements
    corecore