452 research outputs found

    Radiation biomarkers : novel insights from transcriptional studies

    Get PDF

    Smart diagnostic nano-agents for cerebral ischemia

    Get PDF
    4noCerebral ischemia (or ischemic stroke) is undeniably one of the most important life-threatening cerebral disorders. It occurs due to a clot formation in one of the blood arteries supplying the brain, causing a reduction or interruption of the blood flow. To date, the use of thrombolytics like the recombinant tissue plasminogen activator or the use of mechanical thrombectomy are the only two food and drug administration-approved treatments. However, these cannot be applied without first evaluating the beneficial or adverse effects on the patient. Thus, imaging is decisive for identifying the appropriateness of each stroke patient, leading potentially to improved therapeutic outcomes. In this review, we will present a variety of diagnostic nano-agents, and a few theranostic ones, for the assessment of ischemic stroke, highlighting their strengths and weaknesses.openopenTapeinos C.; Battaglini M.; Marino A.; Ciofani G.Tapeinos, C.; Battaglini, M.; Marino, A.; Ciofani, G

    Natural ventilation design attributes application effect on, indoor natural ventilation performance of a double storey, single unit residential building

    Get PDF
    In establishing a good indoor thermal condition, air movement is one of the important parameter to be considered to provide indoor fresh air for occupants. Due to the public awareness on environment impact, people has been increasingly attentive to passive design in achieving good condition of indoor building ventilation. Throughout case studies, significant building attributes were found giving effect on building indoor natural ventilation performance. The studies were categorized under vernacular houses, contemporary houses with vernacular element and contemporary houses. The indoor air movement of every each spaces in the houses were compared with the outdoor air movement surrounding the houses to indicate the space’s indoor natural ventilation performance. Analysis found the wind catcher element appears to be the most significant attribute to contribute most to indoor natural ventilation. Wide opening was also found to be significant especially those with louvers. Whereas it is also interesting to find indoor layout design is also significantly giving impact on the performance. The finding indicates that a good indoor natural ventilation is not only dictated by having proper openings at proper location of a building, but also on how the incoming air movement is managed throughout the interior spaces by proper layout. Understanding on the air pressure distribution caused by indoor windward and leeward side is important in directing the air flow to desired spaces in producing an overall good indoor natural ventilation performance

    VISUALIZATION OF ULTRASOUND INDUCED CAVITATION BUBBLES USING SYNCHROTRON ANALYZER BASED IMAGING

    Get PDF
    Ultrasound is recognized as the fastest growing medical modality for imaging and therapy. Being noninvasive, painless, portable, X-ray radiation-free and far less expensive than magnetic resonance imaging, ultrasound is widely used in medicine today. Despite these benefits, undesirable bioeffects of high-frequency sound waves have raised concerns; particularly, because ultrasound imaging has become an integral part of prenatal care today and is increasingly used for therapeutic applications. As such, ultrasound bioeffects must be carefully considered to ensure optimal benefits-to-risk ratio. In this context, few studies have been done to explore the physics (i.e. ‘cavitation’) behind the risk factors. One reason may be associated with the challenges in visualization of ultrasound-induced cavitation bubbles in situ. To address this issue, this research aims to develop a synchrotron-based assessment technique to enable visualization and characterization of ultrasound-induced microbubbles in a physiologically relevant medium under standard ultrasound operating conditions. The first objective is to identify a suitable synchrotron X-ray imaging technique for visualization of ultrasound-induced microbubbles in water. Two synchrotron X-ray phase-sensitive imaging techniques, in-line phase contrast imaging (PCI) and analyzer-based imaging (ABI), were evaluated. Results revealed the superiority of the ABI method compared to PCI for visualization of ultrasound-induced microbubbles. The second main objective is to employ the ABI method to assess the effects of ultrasound acoustic frequency and power on visualization and mapping of ultrasound-induced microbubble patterns in water. The time-averaged probability of ultrasound-induced microbubble occurrence along the ultrasound beam propagation in water was determined using the ABI method. Results showed the utility of synchrotron ABI for visualizing cavitation bubbles formed in water by clinical ultrasound systems working at high frequency and output powers as low as used for therapeutic systems. It was demonstrated that the X-ray ABI method has great potential for mapping ultrasound-induced microbubble patterns in a fluidic environment under different ultrasound operating conditions of clinical therapeutic devices. Taken together, this research represents an advance in detection techniques for visualization and mapping of ultrasound-induced microbubble patterns using the synchrotron X-ray ABI method without usage of contrast agents. Findings from this research will pave the road toward the development of a synchrotron-based detection technique for characterization of ultrasound-induced cavitation microbubbles in soft tissues in the future

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 140

    Get PDF
    This bibliography lists 306 reports, articles, and other documents introduced into the NASA scientific and technical information system in March 1975

    RISKIND: A computer program for calculating radiological consequences and health risks from transportation of spent nuclear fuel

    Full text link

    12th Man in Space Symposium: The Future of Humans in Space. Abstract Volume

    Get PDF
    The National Aeronautics and Space Administration (NASA) is pleased to host the 12th IAA Man in Space Symposium. A truly international forum, this symposium brings together scientists, engineers, and managers interested in all aspects of human space flight to share the most recent research results and space agency planning related to the future of humans in space. As we look out at the universe from our own uniquely human perspective, we see a world that we affect at the same time that it affects us. Our tomorrows are highlighted by the possibilities generated by our knowledge, our drive, and our dreams. This symposium will examine our future in space from the springboard of our achievements
    • …
    corecore