221 research outputs found

    Analysis of adversarial attacks against CNN-based image forgery detectors

    Full text link
    With the ubiquitous diffusion of social networks, images are becoming a dominant and powerful communication channel. Not surprisingly, they are also increasingly subject to manipulations aimed at distorting information and spreading fake news. In recent years, the scientific community has devoted major efforts to contrast this menace, and many image forgery detectors have been proposed. Currently, due to the success of deep learning in many multimedia processing tasks, there is high interest towards CNN-based detectors, and early results are already very promising. Recent studies in computer vision, however, have shown CNNs to be highly vulnerable to adversarial attacks, small perturbations of the input data which drive the network towards erroneous classification. In this paper we analyze the vulnerability of CNN-based image forensics methods to adversarial attacks, considering several detectors and several types of attack, and testing performance on a wide range of common manipulations, both easily and hardly detectable

    Steganography Images Detection using Different Steganalysis Techniques with Markov Chain Features

    Get PDF
    Steganography is the art of covered or hidden writing It is used for criminal activities applications environment In this paper we focus on implementation of effective detection technique is an essential task in digital images Previously many number of detection techniques are available for steganography images After implementation of all approaches also again some challenges are available This paper presents comparative study in between different steganalysis techniques Different techniques are providing different results Analyze of all techniques detection and embedding performance results Finally we can decide one best steganalysis technique It saves time and increases accuracy compare to all previous method

    Recurrence network analysis of design-quality interactions in additive manufacturing

    Get PDF
    Powder bed fusion (PBF) additive manufacturing (AM) provides a great level of flexibility in the design-driven build of metal products. However, the more complex the design, the more difficult it becomes to control the quality of AM builds. The quality challenge persistently hampers the widespread application of AM technology. Advanced imaging (e.g., X-ray computed tomography scans and high-resolution optical images) has been increasingly explored to enhance the visibility of information and improve the AM quality control. Realizing the full potential of imaging data depends on the advent of information processing methodologies for the analysis of design-quality interactions. This paper presents a design of AM experiment to investigate how design parameters (e.g., build orientation, thin-wall width, thin-wall height, and contour space) interact with quality characteristics in thin-wall builds. Note that the build orientation refers to the position of thin-walls in relation to the recoating direction on the plate, and the contour space indicates the width between rectangle hatches. First, we develop a novel generalized recurrence network (GRN) to represent the AM spatial image data. Then, GRN quantifiers, namely degree, betweenness, pagerank, closeness, and eigenvector centralities, are extracted to characterize the quality of layerwise builds. Further, we establish a regression model to predict how the design complexity impacts GRN behaviors in each layer of thin-wall builds. Experimental results show that network features are sensitive to build orientations, width, height, and contour space under the significant level α = 0.05. Thin-walls with the width bigger than 0.1 mm printed under orientation 0° are found to yield better quality compared to 60° and 90°. Also, thin-walls build with orientation 60° are more sensitive to the changes in contour space compare to the other two orientations. As a result, the orientation 60° should be avoided while printing thin-wall structures. The proposed design-quality analysis shows great potential to optimize engineering design and enhance the quality of PBF-AM builds
    • …
    corecore