10,208 research outputs found

    Channel-Optimized Vector Quantizer Design for Compressed Sensing Measurements

    Full text link
    We consider vector-quantized (VQ) transmission of compressed sensing (CS) measurements over noisy channels. Adopting mean-square error (MSE) criterion to measure the distortion between a sparse vector and its reconstruction, we derive channel-optimized quantization principles for encoding CS measurement vector and reconstructing sparse source vector. The resulting necessary optimal conditions are used to develop an algorithm for training channel-optimized vector quantization (COVQ) of CS measurements by taking the end-to-end distortion measure into account.Comment: Published in ICASSP 201

    Distributed Quantization for Compressed Sensing

    Full text link
    We study distributed coding of compressed sensing (CS) measurements using vector quantizer (VQ). We develop a distributed framework for realizing optimized quantizer that enables encoding CS measurements of correlated sparse sources followed by joint decoding at a fusion center. The optimality of VQ encoder-decoder pairs is addressed by minimizing the sum of mean-square errors between the sparse sources and their reconstruction vectors at the fusion center. We derive a lower-bound on the end-to-end performance of the studied distributed system, and propose a practical encoder-decoder design through an iterative algorithm.Comment: 5 Pages, Accepted for presentation in ICASSP 201

    Power Allocation for Distributed BLUE Estimation with Full and Limited Feedback of CSI

    Full text link
    This paper investigates the problem of adaptive power allocation for distributed best linear unbiased estimation (BLUE) of a random parameter at the fusion center (FC) of a wireless sensor network (WSN). An optimal power-allocation scheme is proposed that minimizes the L2L^2-norm of the vector of local transmit powers, given a maximum variance for the BLUE estimator. This scheme results in the increased lifetime of the WSN compared to similar approaches that are based on the minimization of the sum of the local transmit powers. The limitation of the proposed optimal power-allocation scheme is that it requires the feedback of the instantaneous channel state information (CSI) from the FC to local sensors, which is not practical in most applications of large-scale WSNs. In this paper, a limited-feedback strategy is proposed that eliminates this requirement by designing an optimal codebook for the FC using the generalized Lloyd algorithm with modified distortion metrics. Each sensor amplifies its analog noisy observation using a quantized version of its optimal amplification gain, which is received by the FC and used to estimate the unknown parameter.Comment: 6 pages, 3 figures, to appear at the IEEE Military Communications Conference (MILCOM) 201

    Limited-Feedback-Based Channel-Aware Power Allocation for Linear Distributed Estimation

    Full text link
    This paper investigates the problem of distributed best linear unbiased estimation (BLUE) of a random parameter at the fusion center (FC) of a wireless sensor network (WSN). In particular, the application of limited-feedback strategies for the optimal power allocation in distributed estimation is studied. In order to find the BLUE estimator of the unknown parameter, the FC combines spatially distributed, linearly processed, noisy observations of local sensors received through orthogonal channels corrupted by fading and additive Gaussian noise. Most optimal power-allocation schemes proposed in the literature require the feedback of the exact instantaneous channel state information from the FC to local sensors. This paper proposes a limited-feedback strategy in which the FC designs an optimal codebook containing the optimal power-allocation vectors, in an iterative offline process, based on the generalized Lloyd algorithm with modified distortion functions. Upon observing a realization of the channel vector, the FC finds the closest codeword to its corresponding optimal power-allocation vector and broadcasts the index of the codeword. Each sensor will then transmit its analog observations using its optimal quantized amplification gain. This approach eliminates the requirement for infinite-rate digital feedback links and is scalable, especially in large WSNs.Comment: 5 Pages, 3 Figures, 1 Algorithm, Forty Seventh Annual Asilomar Conference on Signals, Systems, and Computers (ASILOMAR 2013
    • …
    corecore