287,104 research outputs found

    Business-oriented Software Process Improvement based on CMM and CMMI using QFD

    Get PDF
    Software Process Improvement (SPI) has become the key to the survival of many software development organizations. Many international SPI models/standards are developed for SPI. The Capability Maturity Model (CMM) and Capability Maturity Model Integrated (CMMI)) from the Software Engineering Institute are two SPI models. In this study, several existing SPI models and approaches are reviewed, their advantages are identified, and their drawbacks are discussed. A set of new SPI frameworks integrating Quality Function Deployment (QFD) with both CMM and CMMI are developed by combining the best features of previous approaches and addressing their limitations --Abstract, page iii

    Supporting the Quality Assurance of a Scientific Framework

    Get PDF
    The quality assurance of scientific software has to deal with special challenges of this type of software, including missing test oracles, the need for high performance computing, and the high priority of non-functional requirements. A scientific framework consists of common code, which provides solutions for several similar mathematical problems. The various possible uses of a scientific framework lead to a large variability in the framework. In addition to the challenges of scientific software, the quality assurance of a scientific framework needs to find a way of dealing with the large variability. In software product line engineering (SPLE), the idea is to develop a software platform and then use mass customization for the creation of a group of similar applications. In this thesis, we show how SPLE, in particular variability modeling, can be applied to support the quality assurance of scientific frameworks. One of the main contributions of this thesis is a process for the creation of reengineering variability models for a scientific framework based on its mathematical requirements. Reengineering means the adjustment of a software system to improve the software quality, mostly without changing the software’s functionality. In our research, the variability models are created for existing software and therefore we call them reengineering variability models. The created variability models are used for a systematic development of system test applications for the framework. Additionally, we developed a model-based method for test case derivation for the system test applications based on the variability models. Furthermore, we contribute a software product line test strategy for scientific frameworks. A test strategy strongly influences the test activities performed. Another main contribution of this thesis is the design of a quality assurance process for scientific frameworks, which combines the test activities of the test strategy with other quality assurance activities. We introduce a list of special characteristics for scientific software, which we use as rationale for the design of this process. We report on a case study, analyzing the feasibility and acceptance by developers for two parts of the design of the quality assurance process: variability model creation and desk-checking, a kind of lightweight review. Using FeatureIDE, an environment for feature-oriented software development as well as an automated test environment, we prototypically demonstrate the applicability of our approach

    A framework for cots software evaluation and selection for COTS mismatches handling and non-functional requirements

    Get PDF
    The decision to purchase Commercial Off-The-Shelf (COTS) software needs systematic guidelines so that the appropriate COTS software can be selected in order to provide a viable and effective solution to the organizations. However, the existing COTS software evaluation and selection frameworks focus more on functional aspects and do not give adequate attention to accommodate the mismatch between user requirements and COTS software specification, and also integration with non functional requirements of COTS software. Studies have identified that these two criteria are important in COTS software evaluation and selection. Therefore, this study aims to develop a new framework of COTS software evaluation and selection that focuses on handling COTS software mismatches and integrating the nonfunctional requirements. The study is conducted using mixed-mode methodology which involves survey and interview. The study is conducted in four main phases: a survey and interview of 63 organizations to identify COTS software evaluation criteria, development of COTS software evaluation and selection framework using Evaluation Theory, development of a new decision making technique by integrating Analytical Hierarchy Process and Gap Analysis to handle COTS software mismatches, and validation of the practicality and reliability of the proposed COTS software Evaluation and Selection Framework (COTS-ESF) using experts’ review, case studies and yardstick validation. This study has developed the COTS-ESF which consists of five categories of evaluation criteria: Quality, Domain, Architecture, Operational Environment and Vendor Reputation. It also provides a decision making technique and a complete process for performing the evaluation and selection of COTS software. The result of this study shows that the evaluated aspects of the framework are feasible and demonstrate their potential and practicality to be applied in the real environment. The contribution of this study straddles both the research and practical perspectives of software evaluation by improving decision making and providing a systematic guidelines for handling issue in purchasing viable COTS software

    A hierarchy of SPI activities for software SMEs: results from ISO/IEC 12207-based SPI assessments

    Get PDF
    In an assessment of software process improvement (SPI) in 15 software small- and –medium-sized enterprises (software SMEs), we applied the broad spectrum of software specific and system context processes in ISO/IEC 12207 to the task of examining SPI in practice. Using the data collected in the study, we developed a four-tiered pyramidal hierarchy of SPI for software SMEs, with processes in the higher tiers undergoing SPI in more companies than processes on lower level tiers. The development of the hierarchy of SPI activities for software SMEs can facilitate future evolutions of process maturity reference frameworks, such as ISO/IEC 15504, in better supporting software development in software SMEs. Furthermore, the findings extend our body of knowledge concerning the practice of SPI in software SMEs, a large and vital sector of the software development community that has largely avoided the implementation of established process maturity and software quality management standards

    Walking Through the Method Zoo: Does Higher Education Really Meet Software Industry Demands?

    Get PDF
    Software engineering educators are continually challenged by rapidly evolving concepts, technologies, and industry demands. Due to the omnipresence of software in a digitalized society, higher education institutions (HEIs) have to educate the students such that they learn how to learn, and that they are equipped with a profound basic knowledge and with latest knowledge about modern software and system development. Since industry demands change constantly, HEIs are challenged in meeting such current and future demands in a timely manner. This paper analyzes the current state of practice in software engineering education. Specifically, we want to compare contemporary education with industrial practice to understand if frameworks, methods and practices for software and system development taught at HEIs reflect industrial practice. For this, we conducted an online survey and collected information about 67 software engineering courses. Our findings show that development approaches taught at HEIs quite closely reflect industrial practice. We also found that the choice of what process to teach is sometimes driven by the wish to make a course successful. Especially when this happens for project courses, it could be beneficial to put more emphasis on building learning sequences with other courses

    IT process architectures for enterprises development: A survey from a maturity model perspective

    Get PDF
    During the last years much has been published about IT governance. Close to the success of many governance efforts are the business frameworks, quality models, and technology standards that help enterprises improve processes, customer service, quality of products, and control. In this paper we i) survey existing frameworks, namely ITIL, ASL and BiSL, ii) find relations with the IT Governance framework CobiT to determine if the maturity model of CobiT can be used by ITIL, ASL and BiSL, and (iii) provide an integrated vista of IT processes viewed from a maturity model perspective. This perspective can help us understand the importance of maturity models for increasing the efficiency of IT processes for enterprises development and business-IT alignment

    Catching up with Method and Process Practice: An Industry-Informed Baseline for Researchers

    Get PDF
    Software development methods are usually not applied by the book.companies are under pressure to continuously deploy software products that meet market needs and stakeholders\u27 requests. To implement efficient and effective development processes, companies utilize multiple frameworks, methods and practices, and combine these into hybrid methods. A common combination contains a rich management framework to organize and steer projects complemented with a number of smaller practices providing the development teams with tools to complete their tasks. In this paper, based on 732 data points collected through an international survey, we study the software development process use in practice. Our results show that 76.8% of the companies implement hybrid methods.company size as well as the strategy in devising and evolving hybrid methods affect the suitability of the chosen process to reach company or project goals. Our findings show that companies that combine planned improvement programs with process evolution can increase their process\u27 suitability by up to 5%
    corecore