173 research outputs found

    A non-adapted sparse approximation of PDEs with stochastic inputs

    Get PDF
    We propose a method for the approximation of solutions of PDEs with stochastic coefficients based on the direct, i.e., non-adapted, sampling of solutions. This sampling can be done by using any legacy code for the deterministic problem as a black box. The method converges in probability (with probabilistic error bounds) as a consequence of sparsity and a concentration of measure phenomenon on the empirical correlation between samples. We show that the method is well suited for truly high-dimensional problems (with slow decay in the spectrum)

    Structured random measurements in signal processing

    Full text link
    Compressed sensing and its extensions have recently triggered interest in randomized signal acquisition. A key finding is that random measurements provide sparse signal reconstruction guarantees for efficient and stable algorithms with a minimal number of samples. While this was first shown for (unstructured) Gaussian random measurement matrices, applications require certain structure of the measurements leading to structured random measurement matrices. Near optimal recovery guarantees for such structured measurements have been developed over the past years in a variety of contexts. This article surveys the theory in three scenarios: compressed sensing (sparse recovery), low rank matrix recovery, and phaseless estimation. The random measurement matrices to be considered include random partial Fourier matrices, partial random circulant matrices (subsampled convolutions), matrix completion, and phase estimation from magnitudes of Fourier type measurements. The article concludes with a brief discussion of the mathematical techniques for the analysis of such structured random measurements.Comment: 22 pages, 2 figure

    Signal Estimation with Additive Error Metrics in Compressed Sensing

    Full text link
    Compressed sensing typically deals with the estimation of a system input from its noise-corrupted linear measurements, where the number of measurements is smaller than the number of input components. The performance of the estimation process is usually quantified by some standard error metric such as squared error or support set error. In this correspondence, we consider a noisy compressed sensing problem with any arbitrary error metric. We propose a simple, fast, and highly general algorithm that estimates the original signal by minimizing the error metric defined by the user. We verify that our algorithm is optimal owing to the decoupling principle, and we describe a general method to compute the fundamental information-theoretic performance limit for any error metric. We provide two example metrics --- minimum mean absolute error and minimum mean support error --- and give the theoretical performance limits for these two cases. Experimental results show that our algorithm outperforms methods such as relaxed belief propagation (relaxed BP) and compressive sampling matching pursuit (CoSaMP), and reaches the suggested theoretical limits for our two example metrics.Comment: to appear in IEEE Trans. Inf. Theor

    The Sampling Rate-Distortion Tradeoff for Sparsity Pattern Recovery in Compressed Sensing

    Full text link
    Recovery of the sparsity pattern (or support) of an unknown sparse vector from a limited number of noisy linear measurements is an important problem in compressed sensing. In the high-dimensional setting, it is known that recovery with a vanishing fraction of errors is impossible if the measurement rate and the per-sample signal-to-noise ratio (SNR) are finite constants, independent of the vector length. In this paper, it is shown that recovery with an arbitrarily small but constant fraction of errors is, however, possible, and that in some cases computationally simple estimators are near-optimal. Bounds on the measurement rate needed to attain a desired fraction of errors are given in terms of the SNR and various key parameters of the unknown vector for several different recovery algorithms. The tightness of the bounds, in a scaling sense, as a function of the SNR and the fraction of errors, is established by comparison with existing information-theoretic necessary bounds. Near optimality is shown for a wide variety of practically motivated signal models

    Low Complexity Regularization of Linear Inverse Problems

    Full text link
    Inverse problems and regularization theory is a central theme in contemporary signal processing, where the goal is to reconstruct an unknown signal from partial indirect, and possibly noisy, measurements of it. A now standard method for recovering the unknown signal is to solve a convex optimization problem that enforces some prior knowledge about its structure. This has proved efficient in many problems routinely encountered in imaging sciences, statistics and machine learning. This chapter delivers a review of recent advances in the field where the regularization prior promotes solutions conforming to some notion of simplicity/low-complexity. These priors encompass as popular examples sparsity and group sparsity (to capture the compressibility of natural signals and images), total variation and analysis sparsity (to promote piecewise regularity), and low-rank (as natural extension of sparsity to matrix-valued data). Our aim is to provide a unified treatment of all these regularizations under a single umbrella, namely the theory of partial smoothness. This framework is very general and accommodates all low-complexity regularizers just mentioned, as well as many others. Partial smoothness turns out to be the canonical way to encode low-dimensional models that can be linear spaces or more general smooth manifolds. This review is intended to serve as a one stop shop toward the understanding of the theoretical properties of the so-regularized solutions. It covers a large spectrum including: (i) recovery guarantees and stability to noise, both in terms of â„“2\ell^2-stability and model (manifold) identification; (ii) sensitivity analysis to perturbations of the parameters involved (in particular the observations), with applications to unbiased risk estimation ; (iii) convergence properties of the forward-backward proximal splitting scheme, that is particularly well suited to solve the corresponding large-scale regularized optimization problem

    Which graphical models are difficult to learn?

    Full text link
    We consider the problem of learning the structure of Ising models (pairwise binary Markov random fields) from i.i.d. samples. While several methods have been proposed to accomplish this task, their relative merits and limitations remain somewhat obscure. By analyzing a number of concrete examples, we show that low-complexity algorithms systematically fail when the Markov random field develops long-range correlations. More precisely, this phenomenon appears to be related to the Ising model phase transition (although it does not coincide with it)
    • …
    corecore