473 research outputs found

    Management of Spectral Resources in Elastic Optical Networks

    Get PDF
    Recent developments in the area of mobile technologies, data center networks, cloud computing and social networks have triggered the growth of a wide range of network applications. The data rate of these applications also vary from a few megabits per second (Mbps) to several Gigabits per second (Gbps), thereby increasing the burden on the Inter- net. To support this growth in Internet data traffic, one foremost solution is to utilize the advancements in optical networks. With technology such as wavelength division multiplexing (WDM) networks, bandwidth upto 100 Gbps can be exploited from the optical fiber in an energy efficient manner. However, WDM networks are not efficient when the traffic demands vary frequently. Elastic Optical Networks (EONs) or Spectrum Sliced Elastic Optical Path Networks (SLICE) or Flex-Grid has been recently proposed as a long-term solution to handle the ever-increasing data traffic and the diverse demand range. EONs provide abundant bandwidth by managing the spectrum resources as fine-granular orthogonal sub-carriers that makes it suitable to accommodate varying traffic demands. However, the Routing and Spectrum Allocation (RSA) algorithm in EONs has to follow additional constraints while allocating sub-carriers to demands. These constraints increase the complexity of RSA in EONs and also, make EONs prone to the fragmentation of spectral resources, thereby decreasing the spectral efficiency. The major objective of this dissertation is to study the problem of spectrum allocation in EONs under various network conditions. With this objective, this dissertation presents the author\u27s study and research on multiple aspects of spectrum allocation in EONs: how to allocate sub-carriers to the traffic demands, how to accommodate traffic demands that varies with time, how to minimize the fragmentation of spectral resources and how to efficiently integrate the predictability of user demands for spectrum assignment. Another important contribution of this dissertation is the application of EONs as one of the substrate technologies for network virtualization

    A survey on OFDM-based elastic core optical networking

    Get PDF
    Orthogonal frequency-division multiplexing (OFDM) is a modulation technology that has been widely adopted in many new and emerging broadband wireless and wireline communication systems. Due to its capability to transmit a high-speed data stream using multiple spectral-overlapped lower-speed subcarriers, OFDM technology offers superior advantages of high spectrum efficiency, robustness against inter-carrier and inter-symbol interference, adaptability to server channel conditions, etc. In recent years, there have been intensive studies on optical OFDM (O-OFDM) transmission technologies, and it is considered a promising technology for future ultra-high-speed optical transmission. Based on O-OFDM technology, a novel elastic optical network architecture with immense flexibility and scalability in spectrum allocation and data rate accommodation could be built to support diverse services and the rapid growth of Internet traffic in the future. In this paper, we present a comprehensive survey on OFDM-based elastic optical network technologies, including basic principles of OFDM, O-OFDM technologies, the architectures of OFDM-based elastic core optical networks, and related key enabling technologies. The main advantages and issues of OFDM-based elastic core optical networks that are under research are also discussed

    On QoS-assured degraded provisioning in service-differentiated multi-layer elastic optical networks

    Full text link
    The emergence of new network applications is driving network operators to not only fulfill dynamic bandwidth requirements, but offer various grades of service. Degraded provisioning provides an effective solution to flexibly allocate resources in various dimensions to reduce blocking for differentiated demands when network congestion occurs. In this work, we investigate the novel problem of online degraded provisioning in service-differentiated multi-layer networks with optical elasticity. Quality of Service (QoS) is assured by service-holding-time prolongation and immediate access as soon as the service arrives without set-up delay. We decompose the problem into degraded routing and degraded resource allocation stages, and design polynomial-time algorithms with the enhanced multi-layer architecture to increase the network flexibility in temporal and spectral dimensions. Illustrative results verify that we can achieve significant reduction of network service failures, especially for requests with higher priorities. The results also indicate that degradation in optical layer can increase the network capacity, while the degradation in electric layer provides flexible time-bandwidth exchange.Comment: accepted by IEEE GLOBECOM 201

    Investigation of dynamic routing and spectrum allocation methods in elastic optical networks

    Get PDF
    The introduction of flexible frequency grids and advanced modulation techniques to optical transmission, namely an elastic optical network, requires new routing and spectrum allocation techniques. In this paper, we investigate dynamic two-step routing and spectrum allocation (RSA) methods for elastic optical networks. K-shortest path-based methods as well as spectrum allocation methods are analysed and discussed. Experimental verified of the investigated techniques is provided using simulation software. Based on the obtained experimental results, it can be seen that effectiveness of routing and spectrum allocation methods depend on network topologies. Moreover, performance of shortest path first methods improves considerably when a number of candidate paths increases in a topology with high nodal degree

    Routing, Modulation and Spectrum Assignment Algorithm Using Multi-Path Routing and Best-Fit

    Get PDF
    Producción CientíficaElastic Optical Networks (EONs) are a promising optical technology to deal with the ever-increasing traffic and the vast number of connected devices of the next generation of the Internet, associated to paradigms like the Internet of Things (IoT), the Tactile Internet or the Industry 4.0, to name just a few. In this kind of optical network, each optical circuit or lightpath is provisioned by means of superchannels of variable bandwidth. In this manner, only the necessary bandwidth to accommodate the demand is allocated, improving the spectrum usage. When establishing a connection, the EON control layer determines the modulation format to be used and allocates a portion of the spectrum in a sequence of fibers from the source to the destination node providing the user-demanded bandwidth. This is known as the routing, modulation level and spectrum assignment (RMSA) problem. In this work, we firstly review the most important contributions in that area, and then, we propose a novel RMSA algorithm, multi-path best-fit (MP-BF), which uses a split spectrum multi-path strategy together with a spectrum assignment technique (best-fit), and which jointly exploit the flexibility of EONs. A simulation study has been conducted comparing the performance of EONs when using MP-BF with other proposals from the literature. The results of this study show that, by using MP-BF, the network can increase its performance in terms of lightpath request blocking ratio and supported traffic load, without affecting the energy per bit or the computation time required to find a solution
    corecore