51,823 research outputs found

    MULTI AGENT-BASED ENVIRONMENTAL LANDSCAPE (MABEL) - AN ARTIFICIAL INTELLIGENCE SIMULATION MODEL: SOME EARLY ASSESSMENTS

    Get PDF
    The Multi Agent-Based Environmental Landscape model (MABEL) introduces a Distributed Artificial Intelligence (DAI) systemic methodology, to simulate land use and transformation changes over time and space. Computational agents represent abstract relations among geographic, environmental, human and socio-economic variables, with respect to land transformation pattern changes. A multi-agent environment is developed providing task-nonspecific problem-solving abilities, flexibility on achieving goals and representing existing relations observed in real-world scenarios, and goal-based efficiency. Intelligent MABEL agents acquire spatial expressions and perform specific tasks demonstrating autonomy, environmental interactions, communication and cooperation, reactivity and proactivity, reasoning and learning capabilities. Their decisions maximize both task-specific marginal utility for their actions and joint, weighted marginal utility for their time-stepping. Agent behavior is achieved by personalizing a dynamic utility-based knowledge base through sequential GIS filtering, probability-distributed weighting, joint probability Bayesian correlational weighting, and goal-based distributional properties, applied to socio-economic and behavioral criteria. First-order logics, heuristics and appropriation of time-step sequences employed, provide a simulation-able environment, capable of re-generating space-time evolution of the agents.Environmental Economics and Policy,

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Towards adaptive multi-robot systems: self-organization and self-adaptation

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The development of complex systems ensembles that operate in uncertain environments is a major challenge. The reason for this is that system designers are not able to fully specify the system during specification and development and before it is being deployed. Natural swarm systems enjoy similar characteristics, yet, being self-adaptive and being able to self-organize, these systems show beneficial emergent behaviour. Similar concepts can be extremely helpful for artificial systems, especially when it comes to multi-robot scenarios, which require such solution in order to be applicable to highly uncertain real world application. In this article, we present a comprehensive overview over state-of-the-art solutions in emergent systems, self-organization, self-adaptation, and robotics. We discuss these approaches in the light of a framework for multi-robot systems and identify similarities, differences missing links and open gaps that have to be addressed in order to make this framework possible

    CoRide: Joint Order Dispatching and Fleet Management for Multi-Scale Ride-Hailing Platforms

    Get PDF
    How to optimally dispatch orders to vehicles and how to tradeoff between immediate and future returns are fundamental questions for a typical ride-hailing platform. We model ride-hailing as a large-scale parallel ranking problem and study the joint decision-making task of order dispatching and fleet management in online ride-hailing platforms. This task brings unique challenges in the following four aspects. First, to facilitate a huge number of vehicles to act and learn efficiently and robustly, we treat each region cell as an agent and build a multi-agent reinforcement learning framework. Second, to coordinate the agents from different regions to achieve long-term benefits, we leverage the geographical hierarchy of the region grids to perform hierarchical reinforcement learning. Third, to deal with the heterogeneous and variant action space for joint order dispatching and fleet management, we design the action as the ranking weight vector to rank and select the specific order or the fleet management destination in a unified formulation. Fourth, to achieve the multi-scale ride-hailing platform, we conduct the decision-making process in a hierarchical way where a multi-head attention mechanism is utilized to incorporate the impacts of neighbor agents and capture the key agent in each scale. The whole novel framework is named as CoRide. Extensive experiments based on multiple cities real-world data as well as analytic synthetic data demonstrate that CoRide provides superior performance in terms of platform revenue and user experience in the task of city-wide hybrid order dispatching and fleet management over strong baselines.Comment: CIKM 201

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    Smart Home and Artificial Intelligence as Environment for the Implementation of New Technologies

    Get PDF
    The technologies of a smart home and artificial intelligence (AI) are now inextricably linked. The perception and consideration of these technologies as a single system will make it possible to significantly simplify the approach to their study, design and implementation. The introduction of AI in managing the infrastructure of a smart home is a process of irreversible close future at the level with personal assistants and autopilots. It is extremely important to standardize, create and follow the typical models of information gathering and device management in a smart home, which should lead in the future to create a data analysis model and decision making through the software implementation of a specialized AI. AI techniques such as multi-agent systems, neural networks, fuzzy logic will form the basis for the functioning of a smart home in the future. The problems of diversity of data and models and the absence of centralized popular team decisions in this area significantly slow down further development. A big problem is a low percentage of open source data and code in the smart home and the AI when the research results are mostly unpublished and difficult to reproduce and implement independently. The proposed ways of finding solutions to models and standards can significantly accelerate the development of specialized AIs to manage a smart home and create an environment for the emergence of native innovative solutions based on analysis of data from sensors collected by monitoring systems of smart home. Particular attention should be paid to the search for resource savings and the profit from surpluses that will push for the development of these technologies and the transition from a level of prospect to technology exchange and the acquisition of benefits.The technologies of a smart home and artificial intelligence (AI) are now inextricably linked. The perception and consideration of these technologies as a single system will make it possible to significantly simplify the approach to their study, design and implementation. The introduction of AI in managing the infrastructure of a smart home is a process of irreversible close future at the level with personal assistants and autopilots. It is extremely important to standardize, create and follow the typical models of information gathering and device management in a smart home, which should lead in the future to create a data analysis model and decision making through the software implementation of a specialized AI. AI techniques such as multi-agent systems, neural networks, fuzzy logic will form the basis for the functioning of a smart home in the future. The problems of diversity of data and models and the absence of centralized popular team decisions in this area significantly slow down further development. A big problem is a low percentage of open source data and code in the smart home and the AI when the research results are mostly unpublished and difficult to reproduce and implement independently. The proposed ways of finding solutions to models and standards can significantly accelerate the development of specialized AIs to manage a smart home and create an environment for the emergence of native innovative solutions based on analysis of data from sensors collected by monitoring systems of smart home. Particular attention should be paid to the search for resource savings and the profit from surpluses that will push for the development of these technologies and the transition from a level of prospect to technology exchange and the acquisition of benefits

    Overview on agent-based social modelling and the use of formal languages

    Get PDF
    Transdisciplinary Models and Applications investigates a variety of programming languages used in validating and verifying models in order to assist in their eventual implementation. This book will explore different methods of evaluating and formalizing simulation models, enabling computer and industrial engineers, mathematicians, and students working with computer simulations to thoroughly understand the progression from simulation to product, improving the overall effectiveness of modeling systems.Postprint (author's final draft
    • …
    corecore