1,239 research outputs found

    A Robust Low-Complexity MIMO Detector for Rank 4 LTE/LTE-A Systems

    Full text link
    This paper deals with MIMO detection for rank 4 LTE systems. The paper revolves around a previously known detector [1, by Inkyu Lee, TCOM'2010] which we shall refer to as RCSMLD (Reduced-Constellation-Size-Maximum-Likelihood-Detector). However, a direct application of the scheme in [1, by Inkyu Lee, TCOM'2010] to LTE/LTE-A rank 4 test cases results in unsatisfactory performance. The first contribution of the paper is to introduce several modifications that can jointly be applied to the basic RCSMLD scheme which, taken together, result in excellent performance. Our second contribution is the development of a highly efficient hardware structure for RCSMLD that allows for an implementation with very few multiplications.Comment: Accepted for publication in PIMRC-2014, Washington DC, US

    Performance - Complexity Comparison of Receivers for a LTE MIMO–OFDM System

    Get PDF
    Implementation of receivers for spatial multiplexing multiple-input multiple-output (MIMO) orthogonal-frequency-division-multiplexing (OFDM) systems is considered. The linear minimum mean-square error (LMMSE) and the K-best list sphere detector (LSD) are compared to the iterative successive interference cancellation (SIC) detector and the iterative K-best LSD. The performance of the algorithms is evaluated in 3G long-term evolution (LTE) system. The SIC algorithm is found to perform worse than the K-best LSD when the MIMO channels are highly correlated, while the performance difference diminishes when the correlation decreases. The receivers are designed for 2X2 and 4X4 antenna systems and three different modulation schemes. Complexity results for FPGA and ASIC implementations are found. A modification to the K-best LSD which increases its detection rate is introduced. The ASIC receivers are designed to meet the decoding throughput requirements in LTE and the K-best LSD is found to be the most complex receiver although it gives the best reliable data transmission throughput. The SIC receiver has the best performance–complexity tradeoff in the 2X2 system but in the 4X4 case, the K-best LSD is the most efficient. A receiver architecture which could be reconfigured to using a simple or a more complex detector as the channel conditions change would achieve the best performance while consuming the least amount of power in the receiver
    • …
    corecore