170 research outputs found

    A study of heuristic guesses for adiabatic quantum computation

    Full text link
    Adiabatic quantum computation (AQC) is a universal model for quantum computation which seeks to transform the initial ground state of a quantum system into a final ground state encoding the answer to a computational problem. AQC initial Hamiltonians conventionally have a uniform superposition as ground state. We diverge from this practice by introducing a simple form of heuristics: the ability to start the quantum evolution with a state which is a guess to the solution of the problem. With this goal in mind, we explain the viability of this approach and the needed modifications to the conventional AQC (CAQC) algorithm. By performing a numerical study on hard-to-satisfy 6 and 7 bit random instances of the satisfiability problem (3-SAT), we show how this heuristic approach is possible and we identify that the performance of the particular algorithm proposed is largely determined by the Hamming distance of the chosen initial guess state with respect to the solution. Besides the possibility of introducing educated guesses as initial states, the new strategy allows for the possibility of restarting a failed adiabatic process from the measured excited state as opposed to restarting from the full superposition of states as in CAQC. The outcome of the measurement can be used as a more refined guess state to restart the adiabatic evolution. This concatenated restart process is another heuristic that the CAQC strategy cannot capture.Comment: 13 pages, 5 figures. Quantum Information Processing. In Pres

    Quantum Algorithms

    Full text link
    This article surveys the state of the art in quantum computer algorithms, including both black-box and non-black-box results. It is infeasible to detail all the known quantum algorithms, so a representative sample is given. This includes a summary of the early quantum algorithms, a description of the Abelian Hidden Subgroup algorithms (including Shor's factoring and discrete logarithm algorithms), quantum searching and amplitude amplification, quantum algorithms for simulating quantum mechanical systems, several non-trivial generalizations of the Abelian Hidden Subgroup Problem (and related techniques), the quantum walk paradigm for quantum algorithms, the paradigm of adiabatic algorithms, a family of ``topological'' algorithms, and algorithms for quantum tasks which cannot be done by a classical computer, followed by a discussion.Comment: 71 pages, 1 figure, to appear in the Springer Encyclopedia of Complexity and Systems Scienc

    Building an iterative heuristic solver for a quantum annealer

    Full text link
    A quantum annealer heuristically minimizes quadratic unconstrained binary optimization (QUBO) problems, but is limited by the physical hardware in the size and density of the problems it can handle. We have developed a meta-heuristic solver that utilizes D-Wave Systems' quantum annealer (or any other QUBO problem optimizer) to solve larger or denser problems, by iteratively solving subproblems, while keeping the rest of the variables fixed. We present our algorithm, several variants, and the results for the optimization of standard QUBO problem instances from OR-Library of sizes 500 and 2500 as well as the Palubeckis instances of sizes 3000 to 7000. For practical use of the solver, we show the dependence of the time to best solution on the desired gap to the best known solution. In addition, we study the dependence of the gap and the time to best solution on the size of the problems solved by the underlying optimizer.Comment: 21 pages, 4 figures; minor edit

    Data-Driven Quantum Approximate Optimization Algorithm for Cyber-Physical Power Systems

    Full text link
    Quantum technology provides a ground-breaking methodology to tackle challenging computational issues in power systems, especially for Distributed Energy Resources (DERs) dominant cyber-physical systems that have been widely developed to promote energy sustainability. The systems' maximum power or data sections are essential for monitoring, operation, and control, while high computational effort is required. Quantum Approximate Optimization Algorithm (QAOA) provides a promising means to search for these sections by leveraging quantum resources. However, its performance highly relies on the critical parameters, especially for weighted graphs. We present a data-driven QAOA, which transfers quasi-optimal parameters between weighted graphs based on the normalized graph density, and verify the strategy with 39,774 instances. Without parameter optimization, our data-driven QAOA is comparable with the Goemans-Williamson algorithm. This work advances QAOA and pilots the practical application of quantum technique to power systems in noisy intermediate-scale quantum devices, heralding its next-generation computation in the quantum era

    Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Implementation on Near-Term Devices

    Full text link
    The Quantum Approximate Optimization Algorithm (QAOA) is a hybrid quantum-classical variational algorithm designed to tackle combinatorial optimization problems. Despite its promise for near-term quantum applications, not much is currently understood about QAOA's performance beyond its lowest-depth variant. An essential but missing ingredient for understanding and deploying QAOA is a constructive approach to carry out the outer-loop classical optimization. We provide an in-depth study of the performance of QAOA on MaxCut problems by developing an efficient parameter-optimization procedure and revealing its ability to exploit non-adiabatic operations. Building on observed patterns in optimal parameters, we propose heuristic strategies for initializing optimizations to find quasi-optimal pp-level QAOA parameters in O(poly(p))O(\text{poly}(p)) time, whereas the standard strategy of random initialization requires 2O(p)2^{O(p)} optimization runs to achieve similar performance. We then benchmark QAOA and compare it with quantum annealing, especially on difficult instances where adiabatic quantum annealing fails due to small spectral gaps. The comparison reveals that QAOA can learn via optimization to utilize non-adiabatic mechanisms to circumvent the challenges associated with vanishing spectral gaps. Finally, we provide a realistic resource analysis on the experimental implementation of QAOA. When quantum fluctuations in measurements are accounted for, we illustrate that optimization will be important only for problem sizes beyond numerical simulations, but accessible on near-term devices. We propose a feasible implementation of large MaxCut problems with a few hundred vertices in a system of 2D neutral atoms, reaching the regime to challenge the best classical algorithms.Comment: 13+10 pages, 15 figure

    Readiness of Quantum Optimization Machines for Industrial Applications

    Full text link
    There have been multiple attempts to demonstrate that quantum annealing and, in particular, quantum annealing on quantum annealing machines, has the potential to outperform current classical optimization algorithms implemented on CMOS technologies. The benchmarking of these devices has been controversial. Initially, random spin-glass problems were used, however, these were quickly shown to be not well suited to detect any quantum speedup. Subsequently, benchmarking shifted to carefully crafted synthetic problems designed to highlight the quantum nature of the hardware while (often) ensuring that classical optimization techniques do not perform well on them. Even worse, to date a true sign of improved scaling with the number of problem variables remains elusive when compared to classical optimization techniques. Here, we analyze the readiness of quantum annealing machines for real-world application problems. These are typically not random and have an underlying structure that is hard to capture in synthetic benchmarks, thus posing unexpected challenges for optimization techniques, both classical and quantum alike. We present a comprehensive computational scaling analysis of fault diagnosis in digital circuits, considering architectures beyond D-wave quantum annealers. We find that the instances generated from real data in multiplier circuits are harder than other representative random spin-glass benchmarks with a comparable number of variables. Although our results show that transverse-field quantum annealing is outperformed by state-of-the-art classical optimization algorithms, these benchmark instances are hard and small in the size of the input, therefore representing the first industrial application ideally suited for testing near-term quantum annealers and other quantum algorithmic strategies for optimization problems.Comment: 22 pages, 12 figures. Content updated according to Phys. Rev. Applied versio

    Recommender systems inspired by the structure of quantum theory

    Full text link
    Physicists use quantum models to describe the behavior of physical systems. Quantum models owe their success to their interpretability, to their relation to probabilistic models (quantization of classical models) and to their high predictive power. Beyond physics, these properties are valuable in general data science. This motivates the use of quantum models to analyze general nonphysical datasets. Here we provide both empirical and theoretical insights into the application of quantum models in data science. In the theoretical part of this paper, we firstly show that quantum models can be exponentially more efficient than probabilistic models because there exist datasets that admit low-dimensional quantum models and only exponentially high-dimensional probabilistic models. Secondly, we explain in what sense quantum models realize a useful relaxation of compressed probabilistic models. Thirdly, we show that sparse datasets admit low-dimensional quantum models and finally, we introduce a method to compute hierarchical orderings of properties of users (e.g., personality traits) and items (e.g., genres of movies). In the empirical part of the paper, we evaluate quantum models in item recommendation and observe that the predictive power of quantum-inspired recommender systems can compete with state-of-the-art recommender systems like SVD++ and PureSVD. Furthermore, we make use of the interpretability of quantum models by computing hierarchical orderings of properties of users and items. This work establishes a connection between data science (item recommendation), information theory (communication complexity), mathematical programming (positive semidefinite factorizations) and physics (quantum models)

    Multistart Methods for Quantum Approximate Optimization

    Full text link
    Hybrid quantum-classical algorithms such as the quantum approximate optimization algorithm (QAOA) are considered one of the most promising approaches for leveraging near-term quantum computers for practical applications. Such algorithms are often implemented in a variational form, combining classical optimization methods with a quantum machine to find parameters to maximize performance. The quality of the QAOA solution depends heavily on quality of the parameters produced by the classical optimizer. Moreover, the presence of multiple local optima in the space of parameters makes it harder for the classical optimizer. In this paper we study the use of a multistart optimization approach within a QAOA framework to improve the performance of quantum machines on important graph clustering problems. We also demonstrate that reusing the optimal parameters from similar problems can improve the performance of classical optimization methods, expanding on similar results for MAXCUT
    • …
    corecore