188 research outputs found

    Secondary use of Structured Electronic Health Records Data: From Observational Studies to Deep Learning-based Predictive Modeling

    Get PDF
    With the wide adoption of electronic health records (EHRs), researchers, as well as large healthcare organizations, governmental institutions, insurance, and pharmaceutical companies have been interested in leveraging this rich clinical data source to extract clinical evidence and develop predictive algorithms. Large vendors have been able to compile structured EHR data from sites all over the United States, de-identify these data, and make them available to data science researchers in a more usable format. For this dissertation, we leveraged one of the earliest and largest secondary EHR data sources and conducted three studies of increasing scope. In the first study, which was of limited scope, we conducted a retrospective observational study to compare the effect of three drugs on a specific population of approximately 3,000 patients. Using a novel statistical method, we found evidence that the selection of phenylephrine as the primary vasopressor to induce hypertension for the management of nontraumatic subarachnoid hemorrhage is associated with better outcomes as compared to selecting norepinephrine or dopamine. In the second study, we widened our scope, using a cohort of more than 100,000 patients to train generalizable models for the risk prediction of specific clinical events, such as heart failure in diabetes patients or pancreatic cancer. In this study, we found that recurrent neural network-based predictive models trained on expressive terminologies, which preserve a high level of granularity, are associated with better prediction performance as compared with other baseline methods, such as logistic regression. Finally, we widened our scope again, to train Med-BERT, a foundation model, on more than 20 million patients’ diagnosis data. Med-BERT was found to improve the prediction performance of downstream tasks that have a small sample size, which otherwise would limit the ability of the model to learn good representation. In conclusion, we found that we can extract useful information and train helpful deep learning-based predictive models. Given the limitations of secondary EHR data and taking into consideration that the data were originally collected for administrative and not research purposes, however, the findings need clinical validation. Therefore, clinical trials are warranted to further validate any new evidence extracted from such data sources before updating clinical practice guidelines. The implementability of the developed predictive models, which are in an early development phase, also warrants further evaluation

    Representation of EHR data for predictive modeling: a comparison between UMLS and other terminologies.

    Get PDF
    OBJECTIVE: Predictive disease modeling using electronic health record data is a growing field. Although clinical data in their raw form can be used directly for predictive modeling, it is a common practice to map data to standard terminologies to facilitate data aggregation and reuse. There is, however, a lack of systematic investigation of how different representations could affect the performance of predictive models, especially in the context of machine learning and deep learning. MATERIALS AND METHODS: We projected the input diagnoses data in the Cerner HealthFacts database to Unified Medical Language System (UMLS) and 5 other terminologies, including CCS, CCSR, ICD-9, ICD-10, and PheWAS, and evaluated the prediction performances of these terminologies on 2 different tasks: the risk prediction of heart failure in diabetes patients and the risk prediction of pancreatic cancer. Two popular models were evaluated: logistic regression and a recurrent neural network. RESULTS: For logistic regression, using UMLS delivered the optimal area under the receiver operating characteristics (AUROC) results in both dengue hemorrhagic fever (81.15%) and pancreatic cancer (80.53%) tasks. For recurrent neural network, UMLS worked best for pancreatic cancer prediction (AUROC 82.24%), second only (AUROC 85.55%) to PheWAS (AUROC 85.87%) for dengue hemorrhagic fever prediction. DISCUSSION/CONCLUSION: In our experiments, terminologies with larger vocabularies and finer-grained representations were associated with better prediction performances. In particular, UMLS is consistently 1 of the best-performing ones. We believe that our work may help to inform better designs of predictive models, although further investigation is warranted

    The Quality Application of Deep Learning in Clinical Outcome Predictions Using Electronic Health Record Data: A Systematic Review

    Get PDF
    Introduction: Electronic Health Record (EHR) is a significant source of medical data that can be used to develop predictive modelling with therapeutically useful outcomes. Predictive modelling using EHR data has been increasingly utilized in healthcare, achieving outstanding performance and improving healthcare outcomes. Objectives: The main goal of this review study is to examine different deep learning approaches and techniques used to EHR data processing. Methods: To find possibly pertinent articles that have used deep learning on EHR data, the PubMed database was searched. Using EHR data, we assessed and summarized deep learning performance in a number of clinical applications that focus on making specific predictions about clinical outcomes, and we compared the outcomes with those of conventional machine learning models. Results: For this study, a total of 57 papers were chosen. There have been five identified clinical outcome predictions: illness (n=33), intervention (n=6), mortality (n=5), Hospital readmission (n=7), and duration of stay (n=1). The majority of research (39 out of 57) used structured EHR data. RNNs were used as deep learning models the most frequently (LSTM: 17 studies, GRU: 6 research). The analysis shows that deep learning models have excelled when applied to a variety of clinical outcome predictions. While deep learning's application to EHR data has advanced rapidly, it's crucial that these models remain reliable, offering critical insights to assist clinicians in making informed decision. Conclusions: The findings demonstrate that deep learning can outperform classic machine learning techniques since it has the advantage of utilizing extensive and sophisticated datasets, such as longitudinal data seen in EHR. We think that deep learning will keep expanding because it has been quite successful in enhancing healthcare outcomes utilizing EHR data

    Artificial intelligence for clinical decision support for monitoring patients in cardiovascular ICUs: a systematic review

    Get PDF
    Background: Artificial intelligence (AI) and machine learning (ML) models continue to evolve the clinical decision support systems (CDSS). However, challenges arise when it comes to the integration of AI/ML into clinical scenarios. In this systematic review, we followed the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA), the population, intervention, comparator, outcome, and study design (PICOS), and the medical AI life cycle guidelines to investigate studies and tools which address AI/ML-based approaches towards clinical decision support (CDS) for monitoring cardiovascular patients in intensive care units (ICUs). We further discuss recent advances, pitfalls, and future perspectives towards effective integration of AI into routine practices as were identified and elaborated over an extensive selection process for state-of-the-art manuscripts. Methods: Studies with available English full text from PubMed and Google Scholar in the period from January 2018 to August 2022 were considered. The manuscripts were fetched through a combination of the search keywords including AI, ML, reinforcement learning (RL), deep learning, clinical decision support, and cardiovascular critical care and patients monitoring. The manuscripts were analyzed and filtered based on qualitative and quantitative criteria such as target population, proper study design, cross-validation, and risk of bias. Results: More than 100 queries over two medical search engines and subjective literature research were developed which identified 89 studies. After extensive assessments of the studies both technically and medically, 21 studies were selected for the final qualitative assessment. Discussion: Clinical time series and electronic health records (EHR) data were the most common input modalities, while methods such as gradient boosting, recurrent neural networks (RNNs) and RL were mostly used for the analysis. Seventy-five percent of the selected papers lacked validation against external datasets highlighting the generalizability issue. Also, interpretability of the AI decisions was identified as a central issue towards effective integration of AI in healthcare

    Neural-signature methods for structured EHR prediction

    Get PDF
    Models that can effectively represent structured Electronic Healthcare Records (EHR) are central to an increasing range of applications in healthcare. Due to the sequential nature of health data, Recurrent Neural Networks have emerged as the dominant component within state-of-the-art architectures. The signature transform represents an alternative modelling paradigm for sequential data. This transform provides a non-learnt approach to creating a fixed vector representation of temporal features and has shown strong performances across an increasing number of domains, including medical data. However, the signature method has not yet been applied to structured EHR data. To this end, we follow recent work that enables the signature to be used as a differentiable layer within a neural architecture enabling application in high dimensional domains where calculation would have previously been intractable. Using a heart failure prediction task as an exemplar, we provide an empirical evaluation of different variations of the signature method and compare against state-of-the-art baselines. This first application of neural-signature methods in real-world healthcare data shows a competitive performance when compared to strong baselines and thus warrants further investigation within the health domain
    • …
    corecore