677 research outputs found

    Towards the Design of Heuristics by Means of Self-Assembly

    Get PDF
    The current investigations on hyper-heuristics design have sprung up in two different flavours: heuristics that choose heuristics and heuristics that generate heuristics. In the latter, the goal is to develop a problem-domain independent strategy to automatically generate a good performing heuristic for the problem at hand. This can be done, for example, by automatically selecting and combining different low-level heuristics into a problem specific and effective strategy. Hyper-heuristics raise the level of generality on automated problem solving by attempting to select and/or generate tailored heuristics for the problem at hand. Some approaches like genetic programming have been proposed for this. In this paper, we explore an elegant nature-inspired alternative based on self-assembly construction processes, in which structures emerge out of local interactions between autonomous components. This idea arises from previous works in which computational models of self-assembly were subject to evolutionary design in order to perform the automatic construction of user-defined structures. Then, the aim of this paper is to present a novel methodology for the automated design of heuristics by means of self-assembly

    A Classification of Hyper-heuristic Approaches

    Get PDF
    The current state of the art in hyper-heuristic research comprises a set of approaches that share the common goal of automating the design and adaptation of heuristic methods to solve hard computational search problems. The main goal is to produce more generally applicable search methodologies. In this chapter we present and overview of previous categorisations of hyper-heuristics and provide a unified classification and definition which captures the work that is being undertaken in this field. We distinguish between two main hyper-heuristic categories: heuristic selection and heuristic generation. Some representative examples of each category are discussed in detail. Our goal is to both clarify the main features of existing techniques and to suggest new directions for hyper-heuristic research

    Heuristic generation via parameter tuning for online bin packing

    Get PDF
    Online bin packing requires immediate decisions to be made for placing an incoming item one at a time into bins of fixed capacity without causing any overflow. The goal is to maximise the average bin fullness after placement of a long stream of items. A recent work describes an approach for solving this problem based on a ‘policy matrix’ representation in which each decision option is independently given a value and the highest value option is selected. A policy matrix can also be viewed as a heuristic with many parameters and then the search for a good policy matrix can be treated as a parameter tuning process. In this study, we show that the Irace parameter tuning algorithm produces heuristics which outperform the standard human designed heuristics for various instances of the online bin packing problem

    The automatic design of hyper-heuristic framework with gene expression programming for combinatorial optimization problems

    Get PDF
    Hyper-heuristic approaches aim to automate heuristic design in order to solve multiple problems instead of designing tailor-made methodologies for individual problems. Hyper-heuristics accomplish this through a high level heuristic (heuristic selection mechanism and an acceptance criterion). This automates heuristic selection, deciding whether to accept or reject the returned solution. The fact that different problems or even instances, have different landscape structures and complexity, the design of efficient high level heuristics can have a dramatic impact on hyper-heuristic performance. In this work, instead of using human knowledge to design the high level heuristic, we propose a gene expression programming algorithm to automatically generate, during the instance solving process, the high level heuristic of the hyper-heuristic framework. The generated heuristic takes information (such as the quality of the generated solution and the improvement made) from the current problem state as input and decides which low level heuristic should be selected and the acceptance or rejection of the resultant solution. The benefit of this framework is the ability to generate, for each instance, different high level heuristics during the problem solving process. Furthermore, in order to maintain solution diversity, we utilize a memory mechanism which contains a population of both high quality and diverse solutions that is updated during the problem solving process. The generality of the proposed hyper-heuristic is validated against six well known combinatorial optimization problem, with very different landscapes, provided by the HyFlex software. Empirical results comparing the proposed hyper-heuristic with state of the art hyper-heuristics, conclude that the proposed hyper-heuristic generalizes well across all domains and achieves competitive, if not superior, results for several instances on all domains

    CHAMP: Creating Heuristics via Many Parameters for online bin packing

    Get PDF
    The online bin packing problem is a well-known bin packing variant which requires immediate decisions to be made for the placement of a lengthy sequence of arriving items of various sizes one at a time into fixed capacity bins without any overflow. The overall goal is maximising the average bin fullness. We investigate a ‘policy matrix’ representation which assigns a score for each decision option independently and the option with the highest value is chosen for one dimensional online bin packing. A policy matrix might also be considered as a heuristic with many parameters, where each parameter value is a score. We hence investigate a framework which can be used for creating heuristics via many parameters. The proposed framework combines a Genetic Algorithm optimiser, which searches the space of heuristics in policy matrix form, and an online bin packing simulator, which acts as the evaluation function. The empirical results indicate the success of the proposed approach, providing the best solutions for almost all item sequence generators used during the experiments. We also present a novel fitness landscape analysis on the search space of policies. This study hence gives evidence of the potential for automated discovery by intelligent systems of powerful heuristics for online problems; reducing the need for expensive use of human expertise

    A genetic programming hyper-heuristic for the multidimensional knapsack problem

    Get PDF
    Purpose: Hyper-heuristics are a class of high-level search techniques which operate on a search space of heuristics rather than directly on a search space of solutions. The purpose of this paper is to investigate the suitability of using genetic programming as a hyper-heuristic methodology to generate constructive heuristics to solve the multidimensional 0-1 knapsack problem. Design/methodology/approach: Early hyper-heuristics focused on selecting and applying a low-level heuristic at each stage of a search. Recent trends in hyper-heuristic research have led to a number of approaches being developed to automatically generate new heuristics from a set of heuristic components. A population of heuristics to rank knapsack items are trained on a subset of test problems and then applied to unseen instances. Findings: The results over a set of standard benchmarks show that genetic programming can be used to generate constructive heuristics which yield human-competitive results. Originality/value: In this work the authors show that genetic programming is suitable as a method to generate reusable constructive heuristics for the multidimensional 0-1 knapsack problem. This is classified as a hyper-heuristic approach as it operates on a search space of heuristics rather than a search space of solutions. To our knowledge, this is the first time in the literature a GP hyper-heuristic has been used to solve the multidimensional 0-1 knapsack problem. The results suggest that using GP to evolve ranking mechanisms merits further future research effort. © Emerald Group Publishing Limited
    • …
    corecore