787 research outputs found

    An Evaluation of Automatically Generated Briefings of Patient Status

    Get PDF
    We report on an evaluation of MAGIC, a system that automatically generates briefings of patient status after coronary bypass surgery, completed in the Cardio Thoracic Intensive Care Unit at New York Presbyterian Hospital. Through enhancements in system design, robustness and speed, we compared information obtained by nurses against two briefings, one automatically generated by MAGIC and one provided by physicians upon the patient's arrival to the ICU. Our results show that MAGIC and the physician briefing provide a substantial increase in the amount of information than is available prior to the patient's arrival and that the information MAGIC provides is accurate. In many aspects, MAGIC out-performs the physician briefing; information is reported earlier and is always available. We conclude that MAGIC provides the CT ICU staff early on with a better assessment of the patient's status than in current practice and allows them to better prepare for the patient's arrival

    Patient Safety in the Cardiac Operating Room: Human Factors and Teamwork: A Scientific Study from the American Heart Association

    Get PDF
    The cardiac surgical operating room (OR) is a complex environment in which highly trained subspecialists interact with each other using sophisticated equipment to care for patients with severe cardiac disease and significant comorbidities. Thousands of patient lives have been saved or significantly improved with the advent of modern cardiac surgery. Indeed, both mortality and morbidity for coronary artery bypass surgery have decreased during the past decade. Nonetheless, the highly skilled and dedicated personnel in cardiac ORs are human and will make errors. Refined techniques, advanced technologies, and enhanced coordination of care have led to significant improvements in cardiac surgery outcomes

    Recommendations for change in infection prevention programs and practice

    Get PDF
    Fifty years of evolution in infection prevention and control programs have involved significant accomplishments related to clinical practices, methodologies, and technology. However, regulatory mandates, and resource and research limitations, coupled with emerging infection threats such as the COVID-19 pandemic, present considerable challenges for infection preventionists. This article provides guidance and recommendations in 14 key areas. These interventions should be considered for implementation by United States health care facilities in the near future

    A safer place for patients: learning to improve patient safety

    Get PDF
    1 Every day over one million people are treated successfully by National Health Service (NHS) acute, ambulance and mental health trusts. However, healthcare relies on a range of complex interactions of people, skills, technologies and drugs, and sometimes things do go wrong. For most countries, patient safety is now the key issue in healthcare quality and risk management. The Department of Health (the Department) estimates that one in ten patients admitted to NHS hospitals will be unintentionally harmed, a rate similar to other developed countries. Around 50 per cent of these patient safety incidentsa could have been avoided, if only lessons from previous incidents had been learned. 2 There are numerous stakeholders with a role in keeping patients safe in the NHS, many of whom require trusts to report details of patient safety incidents and near misses to them (Figure 2). However, a number of previous National Audit Office reports have highlighted concerns that the NHS has limited information on the extent and impact of clinical and non-clinical incidents and trusts need to learn from these incidents and share good practice across the NHS more effectively (Appendix 1). 3 In 2000, the Chief Medical Officer’s report An organisation with a memory 1 , identified that the key barriers to reducing the number of patient safety incidents were an organisational culture that inhibited reporting and the lack of a cohesive national system for identifying and sharing lessons learnt. 4 In response, the Department published Building a safer NHS for patients3 detailing plans and a timetable for promoting patient safety. The goal was to encourage improvements in reporting and learning through the development of a new mandatory national reporting scheme for patient safety incidents and near misses. Central to the plan was establishing the National Patient Safety Agency to improve patient safety by reducing the risk of harm through error. The National Patient Safety Agency was expected to: collect and analyse information; assimilate other safety-related information from a variety of existing reporting systems; learn lessons and produce solutions. 5 We therefore examined whether the NHS has been successful in improving the patient safety culture, encouraging reporting and learning from patient safety incidents. Key parts of our approach were a census of 267 NHS acute, ambulance and mental health trusts in Autumn 2004, followed by a re-survey in August 2005 and an omnibus survey of patients (Appendix 2). We also reviewed practices in other industries (Appendix 3) and international healthcare systems (Appendix 4), and the National Patient Safety Agency’s progress in developing its National Reporting and Learning System (Appendix 5) and other related activities (Appendix 6). 6 An organisation with a memory1 was an important milestone in the NHS’s patient safety agenda and marked the drive to improve reporting and learning. At the local level the vast majority of trusts have developed a predominantly open and fair reporting culture but with pockets of blame and scope to improve their strategies for sharing good practice. Indeed in our re-survey we found that local performance had continued to improve with more trusts reporting having an open and fair reporting culture, more trusts with open reporting systems and improvements in perceptions of the levels of under-reporting. At the national level, progress on developing the national reporting system for learning has been slower than set out in the Department’s strategy of 2001 3 and there is a need to improve evaluation and sharing of lessons and solutions by all organisations with a stake in patient safety. There is also no clear system for monitoring that lessons are learned at the local level. Specifically: a The safety culture within trusts is improving, driven largely by the Department’s clinical governance initiative 4 and the development of more effective risk management systems in response to incentives under initiatives such as the NHS Litigation Authority’s Clinical Negligence Scheme for Trusts (Appendix 7). However, trusts are still predominantly reactive in their response to patient safety issues and parts of some organisations still operate a blame culture. b All trusts have established effective reporting systems at the local level, although under-reporting remains a problem within some groups of staff, types of incidents and near misses. The National Patient Safety Agency did not develop and roll out the National Reporting and Learning System by December 2002 as originally envisaged. All trusts were linked to the system by 31 December 2004. By August 2005, at least 35 trusts still had not submitted any data to the National Reporting and Learning System. c Most trusts pointed to specific improvements derived from lessons learnt from their local incident reporting systems, but these are still not widely promulgated, either within or between trusts. The National Patient Safety Agency has provided only limited feedback to trusts of evidence-based solutions or actions derived from the national reporting system. It published its first feedback report from the Patient Safety Observatory in July 2005

    Applications of aerospace technology in the public sector

    Get PDF
    Current activities of the program to accelerate specific applications of space related technology in major public sector problem areas are summarized for the period 1 June 1971 through 30 November 1971. An overview of NASA technology, technology applications, and supporting activities are presented. Specific technology applications in biomedicine are reported including cancer detection, treatment and research; cardiovascular diseases, diagnosis, and treatment; medical instrumentation; kidney function disorders, treatment, and research; and rehabilitation medicine
    • …
    corecore