26 research outputs found

    Robust and Analytical Cardiovascular Sensing

    Get PDF
    The photoplethysmogram (PPG) is a noninvasive cardiovascular signal related to the pulsatile volume of blood in tissue. The PPG is user-friendly and has the potential to be measured remotely in a contactless manner using a regular RGB camera. In this dissertation, we study the modeling and analytics of PPG signal to facilitate its applications in both robust and remote cardiovascular sensing. In the first part of this dissertation, we study the remote photoplethysmography (rPPG) and present a robust and efficient rPPG system to extract pulse rate (PR) and pulse rate variability (PRV) from face videos. Compared with prior art, our proposed system can achieve accurate PR and PRV estimates even when the video contains significant subject motion and environmental illumination change. In the second part of the dissertation, we present a novel frequency tracking algorithm called Adaptive Multi-Trace Carving (AMTC) to address the micro signal extraction problems. AMTC enables an accurate detection and estimation of one or more subtle frequency components in a very low signal-to-noise ratio condition. In the third part of the dissertation, the relation between electrocardiogram (ECG) and PPG is studied and the waveform of ECG is inferred via the PPG signals. In order to address this cardiovascular inverse problem, a transform is proposed to map the discrete cosine transform coefficients of each PPG cycle to those of the corresponding ECG cycle. As the first work to address this biomedical inverse problem, this line of research enables a full utilization of the easy accessibility of PPG and the clinical authority of ECG for better preventive healthcare

    Remote Bio-Sensing: Open Source Benchmark Framework for Fair Evaluation of rPPG

    Full text link
    Remote Photoplethysmography (rPPG) is a technology that utilizes the light absorption properties of hemoglobin, captured via camera, to analyze and measure blood volume pulse (BVP). By analyzing the measured BVP, various physiological signals such as heart rate, stress levels, and blood pressure can be derived, enabling applications such as the early prediction of cardiovascular diseases. rPPG is a rapidly evolving field as it allows the measurement of vital signals using camera-equipped devices without the need for additional devices such as blood pressure monitors or pulse oximeters, and without the assistance of medical experts. Despite extensive efforts and advances in this field, serious challenges remain, including issues related to skin color, camera characteristics, ambient lighting, and other sources of noise, which degrade performance accuracy. We argue that fair and evaluable benchmarking is urgently required to overcome these challenges and make any meaningful progress from both academic and commercial perspectives. In most existing work, models are trained, tested, and validated only on limited datasets. Worse still, some studies lack available code or reproducibility, making it difficult to fairly evaluate and compare performance. Therefore, the purpose of this study is to provide a benchmarking framework to evaluate various rPPG techniques across a wide range of datasets for fair evaluation and comparison, including both conventional non-deep neural network (non-DNN) and deep neural network (DNN) methods. GitHub URL: https://github.com/remotebiosensing/rppg.Comment: 19 pages, 10 figure

    Exploring remote photoplethysmography signals for deepfake detection in facial videos

    Get PDF
    Abstract. With the advent of deep learning-based facial forgeries, also called "deepfakes", the feld of accurately detecting forged videos has become a quickly growing area of research. For this endeavor, remote photoplethysmography, the process of extracting biological signals such as the blood volume pulse and heart rate from facial videos, offers an interesting avenue for detecting fake videos that appear utterly authentic to the human eye. This thesis presents an end-to-end system for deepfake video classifcation using remote photoplethysmography. The minuscule facial pixel colour changes are used to extract the rPPG signal, from which various features are extracted and used to train an XGBoost classifer. The classifer is then tested using various colour-to-blood volume pulse methods (OMIT, POS, LGI and CHROM) and three feature extraction window lengths of two, four and eight seconds. The classifer was found effective at detecting deepfake videos with an accuracy of 85 %, with minimal performance difference found between the window lengths. The GREEN channel signal was found to be important for this classifcationEtäfotoplethysmografian hyödyntäminen syväväärennösten tunnistamiseen. Tiivistelmä. Syväväärennösten eli syväoppimiseen perustuvien kasvoväärennöksien yleistyessä väärennösten tarkasta tunnistamisesta koneellisesti on tullut nopeasti kasvava tutkimusalue. Etäfotoplethysmografa (rPPG) eli biologisten signaalien kuten veritilavuuspulssin tai sykkeen mittaaminen videokuvasta tarjoaa kiinnostavan keinon tunnistaa väärennöksiä, jotka vaikuttavat täysin aidoilta ihmissilmälle. Tässä diplomityössä esitellään etäfotoplethysmografaan perustuva syväväärennösten tunnistusmetodi. Kasvojen minimaalisia värimuutoksia hyväksikäyttämällä mitataan fotoplethysmografasignaali, josta lasketuilla ominaisuuksilla koulutetaan XGBoost-luokittelija. Luokittelijaa testataan usealla eri värisignaalista veritilavuussignaaliksi muuntavalla metodilla sekä kolmella eri ominaisuuksien ikkunapituudella. Luokittelija pystyy tunnistamaan väärennetyn videon aidosta 85 % tarkkuudella. Eri ikkunapituuksien välillä oli minimaalisia eroja, ja vihreän värin signaalin havaittiin olevan luokittelun suorituskyvyn kannalta merkittävä

    Heart rates estimation using rPPG methods in challenging imaging conditions

    Get PDF
    Abstract. The cardiovascular system plays a crucial role in maintaining the body’s equilibrium by regulating blood flow and oxygen supply to different organs and tissues. While contact-based techniques like electrocardiography and photoplethysmography are commonly used in healthcare and clinical monitoring, they are not practical for everyday use due to their skin contact requirements. Therefore, non-contact alternatives like remote photoplethysmography (rPPG) have gained significant attention in recent years. However, extracting accurate heart rate information from rPPG signals under challenging imaging conditions, such as image degradation and occlusion, remains a significant challenge. Therefore, this thesis aims to investigate the effectiveness of rPPG methods in extracting heart rate information from rPPG signals in these imaging conditions. It evaluates the effectiveness of both traditional rPPG approaches and rPPG pre-trained deep learning models in the presence of real-world image transformations, such as occlusion of the faces by sunglasses or facemasks, as well as image degradation caused by noise artifacts and motion blur. The study also explores various image restoration techniques to enhance the performance of the selected rPPG methods and experiments with various fine-tuning methods of the best-performing pre-trained model. The research was conducted on three databases, namely UBFC-rPPG, UCLA-rPPG, and UBFC-Phys, and includes comprehensive experiments. The results of this study offer valuable insights into the efficacy of rPPG in practical scenarios and its potential as a non-contact alternative to traditional cardiovascular monitoring techniques
    corecore