2,485 research outputs found

    A Study of Channel Model Parameters for Aerial Base Stations at 2.4 GHz in Different Environments

    Get PDF
    The 5th generation of cellular networks (5G) will provide high speed and high-availability wireless links for communication between mobile users. The usage of aerial platforms as base stations has been recently proposed to meet the above requirements, especially in densely-packed urban areas. To make an accurate prediction of the performance in such a communication system the availability of suitable channel models is a fundamental requirement. Here, we concentrate on a simple path loss and shadow fading channel model that is commonly used to describe the propagation between an aerial base station and a user on the ground. A commercial 3D ray-tracing simulator is used to extract the main parameters used in the model and the Line of Sight/Non Line of Sight probabilities as a function of the transmitter height and elevation angle. We consider three reference scenarios: Suburban, Urban and Urban High Rise generated according to ITU-R specifications. As a novel contribution, we also show simulation results for the spatial correlation of the received signal in the three considered scenarios

    A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles

    Full text link
    In recent years, there has been a dramatic increase in the use of unmanned aerial vehicles (UAVs), particularly for small UAVs, due to their affordable prices, ease of availability, and ease of operability. Existing and future applications of UAVs include remote surveillance and monitoring, relief operations, package delivery, and communication backhaul infrastructure. Additionally, UAVs are envisioned as an important component of 5G wireless technology and beyond. The unique application scenarios for UAVs necessitate accurate air-to-ground (AG) propagation channel models for designing and evaluating UAV communication links for control/non-payload as well as payload data transmissions. These AG propagation models have not been investigated in detail when compared to terrestrial propagation models. In this paper, a comprehensive survey is provided on available AG channel measurement campaigns, large and small scale fading channel models, their limitations, and future research directions for UAV communication scenarios

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    Connecting Disjoint Nodes Through a UAV-Based Wireless Network for Bridging Communication Using IEEE 802.11 Protocols

    Get PDF
    Cooperative aerial wireless networks composed of small unmanned aerial vehicles(UAVs) are easy and fast to deploy and provide on the fly communication facilities in situations where part of the communication infrastructure is destroyed and the survivors need to be rescued on emergency basis. In this article, we worked on such a cooperative aerial UAV-based wireless network to connect the two participating stations. The proposed method provides on the fly communication facilities to connect the two ground stations through a wireless access point (AP) mounted on a UAV using the IEEE 802.11a/b/g/n. We conducted our experiments both indoor and outdoor to investigate the performance of IEEE 802.11 protocol stack including a/b/g/n. We envisioned two different cases: line of sight (LoS) and non-line of sight (NLoS). In LoS, we consider three different scenarios with respect to UAV altitude and performed the experiments at different altitudes to measure the performance and applicability of the proposed system in catastrophic situations and healthcare applications. Similarly, for NLoS, we performed a single set of experiments in an indoor environment. Based on our observations from the experiments, 802.11n at 2.4 GHz outperforms the other IEEE protocols in terms of data rate followed by 802.11n at 5 GHz band. We also concluded that 802.11n is the more suitable protocol that can be practiced in disastrous situations such as rescue operations and healthcare applications

    CONCEPTUALIZATION AND ANALYSIS OF USING UNMANNED AERIAL VEHICLES AS COMMUNICATIONS RELAYS IN A GPS-DENIED ENVIRONMENT

    Get PDF
    Many armed forces are becoming network-centric and highly interconnected. This transformation, along with decentralized decision-making, has been enabled by technological advancements in the digital battlefield. As the battlefield evolves and missions require units to be mobile and support numerous tactical capabilities, the current concept of deploying static radio-relay nodes to extend the range of communication may no longer be suitable. Hence, this thesis aims to design an operational concept using unmanned aerial systems such as aerostats and tactical drones to provide beyond line-of-sight communication for tactical forces while overcoming the limitations in a GPS-denied environment. The proposed concept is divided into three phases to assess operational and communication system needs, given Federal Communications Commission regulations that set the maximum effective isotropic radiated power in the industrial, scientific, and medical band at 36 dBm. The maximum communication range between two nodes can be studied using the Friis propagation equation. In addition, Simulink software is used to study the effective application throughput with respect to distance. From the analysis, IEEE 802.11ax can provide a higher data throughput and support both 2.4 GHz and 5.0 GHz frequency bands. Using a simulated environment and operational scenario, the estimated number of aerial systems required to provide communication coverage for a 50 km by 50 km area is determined.Captain, Singapore ArmyApproved for public release. Distribution is unlimited
    corecore