8,453 research outputs found

    Fundamental remote sensing science research program. Part 1: Scene radiation and atmospheric effects characterization project

    Get PDF
    Brief articles summarizing the status of research in the scene radiation and atmospheric effect characterization (SRAEC) project are presented. Research conducted within the SRAEC program is focused on the development of empirical characterizations and mathematical process models which relate the electromagnetic energy reflected or emitted from a scene to the biophysical parameters of interest

    A Neural Network Method for Mixture Estimation for Vegetation Mapping

    Full text link
    While most forest maps identify only the dominant vegetation class in delineated stands, individual stands are often better characterized by a mix of vegetation types. Many land management applications, including wildlife habitat studies, can benefit from knowledge of mixes. This paper examines various algorithms that use data from the Landsat Thematic Mapper (TM) satellite to estimate mixtures of vegetation types within forest stands. Included in the study are maximum likelihood classification and linear mixture models as well as a new methodology based on the ARTMAP neural network. Two paradigms are considered: classification methods, which describe stand-level vegetation mixtures as mosaics of pixels, each identified with its primary vegetation class; and mixture methods, which treat samples as blends of vegetation, even at the pixel level. Comparative analysis of these mixture estimation methods, tested on data from the Plumas National Forest, yields the following conclusions: (1) accurate estimates of proportions of hardwood and conifer cover within stands can be obtained, particularly when brush is not present in the understory; (2) ARTMAP outperforms statistical methods and linear mixture models in both the classification and the mixture paradigms; (3) topographic correction fails to improve mapping accuracy; and (4) the new ARTMAP mixture system produces the most accurate overall results. The Plumas data set has been made available to other researchers for further development of new mapping methods and comparison with the quantitative studies presented here, which establish initial benchmark standards.National Science Foundation (IRI 94-0165, SBR 95-13889); Office of Naval Research (N00014-95-1-0409, N00014-95-0657); Region 5 Remote Sensing Laboratory of the U.S. Forest Servic

    Remote sensing of earth terrain

    Get PDF
    Abstracts from 46 refereed journal and conference papers are presented for research on remote sensing of earth terrain. The topics covered related to remote sensing include the following: mathematical models, vegetation cover, sea ice, finite difference theory, electromagnetic waves, polarimetry, neural networks, random media, synthetic aperture radar, electromagnetic bias, and others

    ART Neural Networks for Remote Sensing Image Analysis

    Full text link
    ART and ARTMAP neural networks for adaptive recognition and prediction have been applied to a variety of problems, including automatic mapping from remote sensing satellite measurements, parts design retrieval at the Boeing Company, medical database prediction, and robot vision. This paper features a self-contained introduction to ART and ARTMAP dynamics. An application of these networks to image processing is illustrated by means of a remote sensing example. The basic ART and ARTMAP networks feature winner-take-all (WTA) competitive coding, which groups inputs into discrete recognition categories. WTA coding in these networks enables fast learning, which allows the network to encode important rare cases but which may lead to inefficient category proliferation with noisy training inputs. This problem is partially solved by ART-EMAP, which use WTA coding for learning but distributed category representations for test-set prediction. Recently developed ART models (dART and dARTMAP) retain stable coding, recognition, and prediction, but allow arbitrarily distributed category representation during learning as well as performance

    Application of remote sensing to state and regional problems

    Get PDF
    The methods and procedures used, accomplishments, current status, and future plans are discussed for each of the following applications of LANDSAT in Mississippi: (1) land use planning in Lowndes County; (2) strip mine inventory and reclamation; (3) white-tailed deer habitat evaluation; (4) remote sensing data analysis support systems; (5) discrimination of unique forest habitats in potential lignite areas; (6) changes in gravel operations; and (7) determining freshwater wetlands for inventory and monitoring. The documentation of all existing software and the integration of the image analysis and data base software into a single package are now considered very high priority items

    Art Neural Networks for Remote Sensing: Vegetation Classification from Landsat TM and Terrain Data

    Full text link
    A new methodology for automatic mapping from Landsat Thematic Mapper (TM) and terrain data, based on the fuzzy ARTMAP neural network, is developed. System capabilities are tested on a challenging remote sensing classification problem, using spectral and terrain features for vegetation classification in the Cleveland National Forest. After training at the pixel level, system performance is tested at the stand level, using sites not seen during training. Results are compared to those of maximum likelihood classifiers, as well as back propagation neural networks and K Nearest Neighbor algorithms. ARTMAP dynamics are fast, stable, and scalable, overcoming common limitations of back propagation, which did not give satisfactory performance. Best results are obtained using a hybrid system based on a convex combination of fuzzy ARTMAP and maximum likelihood predictions. A prototype remote sensing example introduces each aspect of data processing and fuzzy ARTMAP classification. The example shows how the network automatically constructs a minimal number of recognition categories to meet accuracy criteria. A voting strategy improves prediction and assigns confidence estimates by training the system several times on different orderings of an input set.National Science Foundation (IRI 94-01659, SBR 93-00633); Office of Naval Research (N00014-95-l-0409, N00014-95-0657

    Combining Parametric and Non-parametric Algorithms for a Partially Unsupervised Classification of Multitemporal Remote-Sensing Images

    Get PDF
    In this paper, we propose a classification system based on a multiple-classifier architecture, which is aimed at updating land-cover maps by using multisensor and/or multisource remote-sensing images. The proposed system is composed of an ensemble of classifiers that, once trained in a supervised way on a specific image of a given area, can be retrained in an unsupervised way to classify a new image of the considered site. In this context, two techniques are presented for the unsupervised updating of the parameters of a maximum-likelihood (ML) classifier and a radial basis function (RBF) neural-network classifier, on the basis of the distribution of the new image to be classified. Experimental results carried out on a multitemporal and multisource remote-sensing data set confirm the effectiveness of the proposed system

    Photomorphic analysis techniques: An interim spatial analysis using satellite remote sensor imagery and historical data

    Get PDF
    The use of machine scanning and/or computer-based techniques to provide greater objectivity in the photomorphic approach was investigated. Photomorphic analysis and its application in regional planning are discussed. Topics included: delineation of photomorphic regions; inadequacies of existing classification systems; tonal and textural characteristics and signature analysis techniques; pattern recognition and Fourier transform analysis; and optical experiments. A bibliography is included
    • …
    corecore