2,900 research outputs found

    The impact of advance organizers upon students' achievement in Computer-Assisted Video Instruction /

    Get PDF
    The results-obtained by a 2 x 2 factorial posttest-showed that the visual-spoken advance organizer did not significantly influence rule-learning in the CAVI situation.It was hypothesized that subjects who receive the advance organizer treatment in a CAVI mediated lesson would achieve higher mean rule-learning test scores than those who do not receive the advance organizer treatment. To test the hypotheses, a sample of 70 college students were subjected to one of two treatment conditions. The instructional material dealing with rule-learning in basic computer programming for the CAVI lesson was developed on the basis of the Principles of Instructional Design suggested by Gagne' and Briggs (1979). The advance organizer for the CAVI mediated lesson was developed based on Ausubel et al.'s conceptual definition of the term (1978). Translated into operational terms, Mayer's (1979) checklist of attributes for advance organizers provided the basis for the advance organizer developed.One of the newer tools for instruction today is Computer-Assisted Video Instruction (CAVI). The focus of this study was the impact of advance organizers as an instructional strategy upon students' achievement in CAVI. Specifically, this research examined the increase of students' rule-learning when exposed to advance organizers presented in a CAVI mediated lesson

    Clickstream for learning analytics to assess students’ behavior with Scratch

    Get PDF
    The construction of knowledge through computational practice requires to teachers a substantial amount of time and effort to evaluate programming skills, to understand and to glimpse the evolution of the students and finally to state a quantitative judgment in learning assessment. The field of learning analytics has been a common practice in research since last years due to their great possibilities in terms of learning improvement. Both, Big and Small data techniques support the analysis cycle of learning analytics and risk of students’ failure prediction. Such possibilities can be a strong positive contribution to the field of computational practice such as programming. Our main objective was to help teachers in their assessments through to make those possibilities effective. Thus, we have developed a functional solution to categorize and understand students’ behavior in programming activities based in Scratch. Through collection and analysis of data generated by students’ clicks in Scratch, we proceed to execute both exploratory and predictive analytics to detect patterns in students’ behavior when developing solutions for assignments. We concluded that resultant taxonomy could help teachers to better support their students by giving real-time quality feedback and act before students deliver incorrectly or at least incomplete tasks.Peer ReviewedPostprint (author's final draft

    Using theory to inform capacity-building: Bootstrapping communities of practice in computer science education research

    Get PDF
    In this paper, we describe our efforts in the deliberate creation of a community of practice of researchers in computer science education (CSEd). We understand community of practice in the sense in which Wenger describes it, whereby the community is characterized by mutual engagement in a joint enterprise that gives rise to a shared repertoire of knowledge, artefacts, and practices. We first identify CSEd as a research field in which no shared paradigm exists, and then we describe the Bootstrapping project, its metaphor, structure, rationale, and delivery, as designed to create a community of practice of CSEd researchers. Features of other projects are also outlined that have similar aims of capacity building in disciplinary-specific pedagogic enquiry. A theoretically derived framework for evaluating the success of endeavours of this type is then presented, and we report the results from an empirical study. We conclude with four open questions for our project and others like it: Where is the locus of a community of practice? Who are the core members? Do capacity-building models transfer to other disciplines? Can our theoretically motivated measures of success apply to other projects of the same nature

    Evaluation of Evidence-Based Practices in Online Learning: A Meta-Analysis and Review of Online Learning Studies

    Get PDF
    A systematic search of the research literature from 1996 through July 2008 identified more than a thousand empirical studies of online learning. Analysts screened these studies to find those that (a) contrasted an online to a face-to-face condition, (b) measured student learning outcomes, (c) used a rigorous research design, and (d) provided adequate information to calculate an effect size. As a result of this screening, 51 independent effects were identified that could be subjected to meta-analysis. The meta-analysis found that, on average, students in online learning conditions performed better than those receiving face-to-face instruction. The difference between student outcomes for online and face-to-face classes—measured as the difference between treatment and control means, divided by the pooled standard deviation—was larger in those studies contrasting conditions that blended elements of online and face-to-face instruction with conditions taught entirely face-to-face. Analysts noted that these blended conditions often included additional learning time and instructional elements not received by students in control conditions. This finding suggests that the positive effects associated with blended learning should not be attributed to the media, per se. An unexpected finding was the small number of rigorous published studies contrasting online and face-to-face learning conditions for K–12 students. In light of this small corpus, caution is required in generalizing to the K–12 population because the results are derived for the most part from studies in other settings (e.g., medical training, higher education)
    corecore