608 research outputs found

    Multipath optimized link state routing for mobile ad hoc networks

    Get PDF
    International audienceMultipath routing protocols for Mobile Ad hoc NETwork (MANET) address the problem of scalability, security (confidentiality and integrity), lifetime of networks, instability of wireless transmissions, and their adaptation to applications. Our protocol, called MP-OLSR (MultiPath OLSR), is a multipath routing protocol based on OLSR. The Multipath Dijkstra Algorithm is proposed to obtain multiple paths. The algorithm gains great flexibility and extensibility by employing different link metrics and cost functions. In addition, route recovery and loop detection are implemented in MP-OLSR in order to improve quality of service regarding OLSR. The backward compatibility with OLSR based on IP source routing is also studied. Simulation based on Qualnet simulator is performed in different scenarios. A testbed is also set up to validate the protocol in real world. The results reveal that MP-OLSR is suitable for mobile, large and dense networks with large traffic, and could satisfy critical multimedia applications with high on time constraints

    Experimentation with MANETs of Smartphones

    Full text link
    Mobile AdHoc NETworks (MANETs) have been identified as a key emerging technology for scenarios in which IEEE 802.11 or cellular communications are either infeasible, inefficient, or cost-ineffective. Smartphones are the most adequate network nodes in many of these scenarios, but it is not straightforward to build a network with them. We extensively survey existing possibilities to build applications on top of ad-hoc smartphone networks for experimentation purposes, and introduce a taxonomy to classify them. We present AdHocDroid, an Android package that creates an IP-level MANET of (rooted) Android smartphones, and make it publicly available to the community. AdHocDroid supports standard TCP/IP applications, providing real smartphone IEEE 802.11 MANET and the capability to easily change the routing protocol. We tested our framework on several smartphones and a laptop. We validate the MANET running off-the-shelf applications, and reporting on experimental performance evaluation, including network metrics and battery discharge rate.Comment: 6 pages, 7 figures, 1 tabl

    Performance Analysis between OLSR and FSR Protocols under Black Hole Attack Using FPGA

    Get PDF
    Security is an important part of wireless ad hoc network or mobile ad hoc network. A mobile ad hoc network (MANET) is an infrastructure less category of wireless network. Routing protocols in Mobile ad hoc network is divided into three categories, Reactive (also known as on demand) routing protocol, Proactive (also known as table driven) routing protocol and Hybrid protocol. Security is an important part in MANET because when we send data source node to destination node in mobile ad hoc network, we want protection in path between source to destination and complete transfer data packet between source node to destination node. In this research paper we use two proactive routing protocol known as OLSR (Optimized Link state Routing) Protocol and FSR (Fisheye State Routing) Protocol. OLSR is a flat routing and Unipath protocol based on multipoint relay not multipath. FSR is a hierarchical routing and multipath protocol based on multiple paths. In this research work we check the performance of these two protocols under five different performance matrices known as Packet delivery ratio (PDR), Packet loss (PL), Average end to end delay (AEED), Normalized Routing load (NRL) and Throughput on black hole attack. Black hole attack is an active attack, in this attack attacker node absorbs the data packet and give the fake reply. In this research paper we analysis the performance two protocol one is unipath known as OLSR and second is Multipath known as FSR under Black hole Attack. The performance of FSR is better than OLSR, because OLSR is unipath and maximum data packet is absorbs in OLSR single path. FSR is better because FSR is Multipath and minimum data packet is absorbs in FSR multi path

    Designing an Adversarial Model Against Reactive and Proactive Routing Protocols in MANETS: A Comparative Performance Study

    Get PDF
    Mobile ad-hoc networks are self-organized infrastructure less networks that consists of mobile nodes, which are capable of maintaining and forming the network by themselves. Recently, researchers are designed several routing protocols on these networks. However, these routing protocols are more vulnerable to attacks from the intruders, which can easily paralyze the operation of the network due to its inherited characteristics of MANETS. One such type of attack is wormhole attack. Because of its severity, the wormhole attack has attracted a great deal of attention in the research community. This paper compares reactive and proactive routing protocols in adversarial environment. Specifically, wormhole attack is applied to these routing protocols to evaluate its performance through simulation. Comprehensively the results shows the comparative performance of these protocols against wormhole attack is hard to detect and easy to implement

    AODVSEC: A Novel Approach to Secure Ad Hoc on-Demand Distance Vector (AODV) Routing Protocol from Insider Attacks in MANETs

    Full text link
    Mobile Ad hoc Network (MANET) is a collection of mobile nodes that can communicate with each other using multihop wireless links without requiring any fixed based-station infrastructure and centralized management. Each node in the network acts as both a host and a router. In such scenario, designing of an efficient, reliable and secure routing protocol has been a major challenging issue over the last many years. Numerous schemes have been proposed for secure routing protocols and most of the research work has so far focused on providing security for routing using cryptography. In this paper, we propose a novel approach to secure Ad hoc On-demand Distance Vector (AODV) routing protocol from the insider attacks launched through active forging of its Route Reply (RREP) control message. AODV routing protocol does not have any security provision that makes it less reliable in publicly open ad hoc network. To deal with the concerned security attacks, we have proposed AODV Security Extension (AODVSEC) which enhances the scope of AODV for the security provision. We have compared AODVSEC with AODV and Secure AODV (SAODV) in normal situation as well as in presence of the three concerned attacks viz. Resource Consumption (RC) attack, Route Disturb (RD) attack, Route Invasion (RI) attack and Blackhole (BH) attack. To evaluate the performances, we have considered Packet Delivery Fraction (PDF), Average End-to-End Delay (AED), Average Throughput (AT), Normalized Routing Load (NRL) and Average Jitter and Accumulated Average Processing Time.Comment: 20 Pages, 24 Figure

    Security Verification of Secure MANET Routing Protocols

    Get PDF
    Secure mobile ad hoc network (MANET) routing protocols are not tested thoroughly against their security properties. Previous research focuses on verifying secure, reactive, accumulation-based routing protocols. An improved methodology and framework for secure MANET routing protocol verification is proposed which includes table-based and proactive protocols. The model checker, SPIN, is selected as the core of the secure MANET verification framework. Security is defined by both accuracy and availability: a protocol forms accurate routes and these routes are always accurate. The framework enables exhaustive verification of protocols and results in a counter-example if the protocol is deemed insecure. The framework is applied to models of the Optimized Link-State Routing (OLSR) and Secure OLSR protocol against five attack vectors. These vectors are based on known attacks against each protocol. Vulnerabilities consistent with published findings are automatically revealed. No unknown attacks were found; however, future attack vectors may lead to new attacks. The new framework for verifying secure MANET protocols extends verification capabilities to table-based and proactive protocols
    • …
    corecore