375 research outputs found

    Implementing RFID Automation into a Small Scale Aircraft Maintenance System

    Get PDF
    The purpose of this study was to explore and identify where technology automation could be used to reduce time and wasted labor in aircraft inventory and maintenance processes. The research used passive RFID AutoID technology due to its capabilities in data logging and relatively hands-off, passive use. The Purdue University’s aircraft maintenance system operates under old time card systems with paper inspection, check outs of tools, and non-routine inspections, contributing to long search times when looking for maintenance problems or lost inventory that may have happened up to and over a year ago. Furthermore, there are general inefficiencies due to locating forms and filling out paperwork. This study evaluated the effectiveness of RFID technology in an updated process map of tool / part usage, while providing a proof-of-concept RFID-enabled system to track aircraft inventory parts and tools. The study collected information about tool usage and inventory accountability. The use of a database to facilitate this data tracking would have allowed easy access and analysis for maintenance managers to better identify tool use with individual technicians. The solution was to RFID tag a selected test set of specialized aircraft maintenance tools found in the tool room at Hangar 6 in Purdue University’s airport that require check out (as well as aircraft inventory parts), utilize the RFID tunnel and Alien RFID system at Purdue University’s Supply Chain Lab, attach RFID tags to mock name badges, and allow for tracking simply by walking through the door or near the tunnel and checking if the tool was recorded by the RFID reader for that particular person. This resulted in a study of the “before case” process map to the “after case” process map, and whether any steps were removed or added

    Implementación de tecnologías RFID e IoT inalámbricas en el Modelado de información de construcción (BIM)

    Get PDF
    ABSTRACT: The integration and installation of innovative Radio Frequency Identification (RFID) technologies in combination with wireless Internet of Things (IoT) technologies in Building Information Modelling (BIM), assigned building elements, can create connectivity between the physical- and the virtual world. Beyond the identification of physical objects, further information can be connected, which can be made available to different user groups during the entire life cycle of the building structure. This provides a high level of transparency, in that by scanning the tagged building elements, complete associated information can be accessed and presented to users via applications, in visual and audio form. One use of an RFID and BIM-supported electronic guidance system, namely for the visually impaired, has already been investigated in my bachelor thesis at the University of Applied Sciences (Technische Hochschule Mittelhessen, THM). This Master’s Thesis focuses on the implementation of passive RFID technology into BIM models in combining them with open-source software applications. BIM represents the digital twin of building models in the digital world and can be linked to physical structures (buildings, roads, sewer systems and such others) and building materials (e.g. textiles, mineral and plastic floor coverings, concrete components) by integrating RFID tags. Connecting the parametric BIM models with the physical building elements by using RFID and wireless IoT technologies in a multi-platform application enables the BIM building models to be actively used throughout the life cycle of a building, not only by the facility management, but also by the public for various use cases. During the literature review, suitable software and hardware components were selected, and a prototype multi-platform application for a navigation and positioning system was developed as proof of concept for the Industry Foundation Classes (IFC) file. (See Demo Version at https://opennavibim.herokuapp.com/ ). The challenge was to read the RFID tags in different installation scenarios. Depending on the installation situations (under, over or in the material), various requirements were specified for RFID tags and readers (RFID, handhold personal digital assistant “PDA”). In this field, further hardware developments are necessary.RESUMEN: Mediante la integración e instalación de la innovadora tecnología de identificación por radiofrecuencia (RFID, Radio Frequency Identification) en el modelado digital de información de construcción (BIM, Building Information Modelling), con la interconexión inalámbrica del internet de las cosas (IoT, Internet of Things), es posible crear una conectividad entre el mundo físico y el virtual. Más allá de la mera identificación de objetos existentes, esta conectividad permite incorporar información adicional, que puede ponerse en disposición de los diferentes grupos de usuarios que intervienen durante el ciclo completo de vida de la estructura de la edificación. Se consigue un alto de nivel de transparencia en ese traspaso de información, accesible por medio del escaneado de los elementos etiquetados en la edificación, al tener una completa información asociada que es presentada a los usuarios vía aplicaciones en formato visual o de audio. Una investigación en la aplicación de tecnología RFID basada en BIM para un sistema de navegación electrónica, destinada a personas con discapacidad visual, ha sido desarrollada en mi trabajo fin de grado en la Universidad de Ciencias Aplicadas de Mittelhessen (THM). El presente Trabajo Fin de Master se centra en la implementación de tecnología RFID pasiva en modelos BIM combinados con aplicaciones de software libre. El modelo BIM representa el gemelo digital de los elementos de construcción en el mundo virtual, permitiendo establecer una relación del modelo con estructuras físicas (edificios, carreteras o sistemas de alcantarillado, entre otros) y materiales de construcción (por ejemplo, textiles, cubiertas de suelo minerales o plásticas, componentes de hormigón, …) por medio de la integración de etiquetas RFID. La conexión de los modelos paramétricos BIM con los elementos físicos del edificio, mediante el uso de tecnologías RFID e IoT inalámbricas en una aplicación multiplataforma, permite que los modelos de construcción BIM se utilicen activamente a lo largo del ciclo de vida de un edificio, no solo por la gestión de las instalaciones, sino también por el público para diversos casos de uso. Durante la revisión bibliográfica, se seleccionaron los componentes de software y hardware adecuados, y se desarrolló un prototipo de aplicación multiplataforma para un sistema de navegación y posicionamiento como prueba de viabilidad del concepto del modelo Industry Foundation Classes (IFC). (Véase la versión de demostración en https://opennavibim.herokuapp.com/ ). La lectura de las etiquetas RFID en diferentes en diferentes situaciones de instalación presenta un desafío, dependiendo de la instalación (debajo, encima o en el material) los requisitos impuestos a las etiquetas y lectores RFID son diferentes. Por lo tanto, es necesario seguir desarrollando el hardware en este ámbito.Máster en Ingeniería de Caminos, Canales y Puertos (Plan 2020

    Integrating the Supply Chain with RFID: A Technical and Business Analysis

    Get PDF
    This paper presents an in-depth analysis of the technical and business implications of adopting Radio Frequency Identification (RFID) in organizational settings. The year 2004 marked a significant shift toward adopting RFID because of mandates by large retailers and government organizations. The use of RFID technology is expected to increase rapidly in the next few years. At present, however, initial barriers against widespread adoption include standards, interoperability, costs, forward compatibility, and lack of familiarity. This paper describes basic components of an RFID system including tags, readers, and antennas and how they work together using an integrated supply chain model. Our analysis suggests that business needs to overcome human resource scarcity, security, legal and financial challenges and make informed decision regarding standards and process reengineering. The technology is not fully mature and suffers from issues of attenuation and interference. A laboratory experiment conducted by the authors\u27 shows that the middleware is not yet at a plug-and-play stage, which means that initial adopters need to spend considerable effort to integrate RFID into their existing business processes. Appendices contain a glossary of common RFID terms, a list of RFID vendors and detailed findings of the laboratory experiment. NOTE: BECAUSE OF THE ILLUSTRATIONS USED, THIS ARTICLE IS LONG; APPROXIMATELY 850KB IN BOTH JOURNAL AND ARTICLE VERSIO

    Lecture Attendance System Using Radio Frequency Identification and Facial Recognition

    Get PDF
    We propose a nexus of wireless biometric solution to the problem of lecture attendance records in an academic environment.The conventional method of taking attendance records on paper particularly in an environment with lower student/lecturerratio is not only laborious but robs on the precious time that could be used for an effective learning. We demonstrated theefficacy of our proposed method against conventional methods as being capable of eliminating time wastage..Keywords: RFID, Facial Recognition, Lecture, Attendance, Tags, Short range reader

    Location estimation in a 3D environment using radio frequency identification tags

    Get PDF
    RFID tag location estimation in a 3D environment is investigated. The location of the tag with unknown coordinates can be estimated with certain accuracy. However, accuracy can be improved using the knowledge based on measurement of additional reference tags with known location. This thesis studies the mathematical formulation and practical realization of location sensing using RFID tags. Deviating from the standard use of RFID technology which employs one tag reader to identify the presence of tag, here multiple tag readers with known location are used to estimate the physical location of an individual tag, with/without the help of few reference tags with known locations. Mathematical model of this concept has been developed based on distance variations in terms of signal strength. Experimental approach with limited range passive tags has been carried out. Since the range of the RFID system was limited only to a few inches, signal strength variations were insignificant. Instead, time domain measurements with the help of an external antenna were conducted. The composite signal width including of the wake up signal of the interrogator, travel time between the interrogator and tag, and the tag\u27s response was measured and quantified. It was observed that the width of the signal was proportional to the distance between the tag reader and the tag. It was noticed that the use of four RFID tag readers yielded fairly accurate results to identify the location the tag based on the mathematical formulation developed here. Additionally, concept of trilateration has also been extended for tracking the tag of unknown location without the use of reference tags. Archival data set corresponding to all tag location due to four different tag readers was compiled. The unknown tag was probed with four tag readers and matching the data to the archival data set yielded unique and accurate results for its unknown location. It was demonstrated that both approaches were proved to be cost-effective techniques and estimation of the location of a specific tag has been achieved with sufficient accuracy

    Implementation of Static RFID Landmarks in SLAM for Planogram Compliance

    Get PDF
    Autonomous robotic systems are becoming increasingly prevalent in everyday life and exhibit robust solutions in a wide range of applications. They face many obstacles with the foremost of which being SLAM, or Simultaneous Localization and Mapping, that encompasses both creation of the map of an unknown environment and localization of the robot in said environment. In this experiment, researchers propose the use of RFID tags in a semi-dynamic commercial environment to provide concrete landmarks for localization and mapping in pursuit of increased locational certainty. With this obtained, the ultimate goal of the research is to construct a robotics platform for planogram compliance and inventory management to provide consistency between online retail platforms and brick and mortar stores. The platform of choice is the Turtlebot3 Burger platform, by ROBOTIS, modified to hold an RFID reader. With existing packages, researchers are provided with the ability to essentially perform SLAM on a base level using an inbuilt Lidar sensor. It is from these existing packages that researchers plan to build a system to localize RFID tags in generated maps to provide a quantifiable decrease in localization time and increase in certainty

    RFID: Prospects for Europe: Item-level Tagging and Public Transportation

    Get PDF
    This report, which is part of the COMPLETE series of studies, investigates the current and future competitiveness of the European industry in RFID applications in general and in two specific cases: item-level tagging and public transportation. It analyses its constituent technologies, drivers and barriers to growth, actual and potential markets and economic impacts, the industrial position and innovative capabilities, and it concludes with policy implicationsJRC.DDG.J.4-Information Societ
    corecore