297 research outputs found

    Technology exploration for adaptive power and frequency scaling in 90nm CMOS

    Get PDF
    In this paper we examine the expectations and limitations of design technologies such as adaptive voltage scaling (AVS) and adaptive body biasing (ABB) in a modern deep sub-micron process. To serve this purpose, a set of ring oscillators was fabricated in a 90nm triple-well CMOS technology. The analysis hereby presented is based on two ring oscillators running at 822MHz and 93MHz, respectively. Measurement results indicate that it is possible to reach 13.8x power savings by 3.4x frequency downscaling using AVS, ±11% power and ±8% frequency tuning at nominal conditions using ABB only, 22x power savings with 5x frequency downscaling by combining AVS and ABB, as well as 22x leakage reduction

    Development of a Sensor Readout Integrated Circuit Towards a Contact Lens for Wireless Intraocular Pressure Monitoring

    Get PDF
    This design covers the design of an integrated circuit (IC) in support of the active contact lens project at Cal Poly. The project aims to monitor intraocular eye pressure (IOP) to help diagnose and treat glaucoma, which is expected affect 6.3 million Americans by 2050. The IC is designed using IBM’s 130 nm 8RF process, is powered by an on-lens thin film 3.8 V rechargeable battery, and will be fabricated at no cost through MOSIS. The IC features a low-power linear regulator that powers a current-starved voltage-controlled oscillator (CSVCO) used for establishing a backscatter communication link. Additional circuitry is included to regulate power to and from the battery. An undervoltage lockout circuit protects the battery from deep discharge damage. When recharging, a rectifier and a voltage regulator provides overvoltage protection. These circuit blocks are biased primarily using a 696 mV subthreshold voltage reference that consumes 110.5 nA

    Analysis and design of a subthreshold CMOS Schmitt trigger circuit

    Get PDF
    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia Elétrica, Florianópolis, 2017.Nesta tese, o disparador Schmitt (ou Schmitt trigger) CMOS clássico (ST) operando em inversão fraca é analisado. A transferência de tensão DC completa é determinada, incluindo expressões analíticas para as tensões dos nós internos. A transferência de tensão DC resultante do ST apresenta um comportamento contínuo mesmo na presença da histerese. Nesse caso, a característica da tensão de saída entre os limites da histerese é formada por um segmento metaestável, que pode ser explicado em termos das resistências negativas dos subcircuitos NMOS e PMOS do ST. A tensão mínima para o aparecimento da histerese é determinada fazendo-se a análise de pequenos sinais. A análise de pequenos sinais também é utilizada para a estimativa da largura do laço de histerese. É mostrado que a histerese não aparece para tensões de alimentação menores que 75 mV em 300 K. A análise do ST operando como amplificador também foi feita. A razão ótima dos transistores foi determinada com o objetivo de se maximizar o ganho de tensão. A comparação do disparador Schmitt com o inversor CMOS convencional destaca as vantagens e desvantagens de cada um para aplicações de ultra-baixa tensão. Também é mostrado que o ST é teoricamente capaz de operar (com ganho de tensão absoluto ?1) com uma tensão de alimentação tão baixa quanto 31.5 mV, a qual é menor do que o conhecido limite prévio de 36 mV, para o inversor convencional. Como amplificador, o ST possui ganho de tensão absoluto consideravelmente maior que o inversor convencional na mesma tensão de alimentação. Três circuitos integrados foram projetados e fabricados para estudar o comportamento do ST com tensões de alimentação entre 50 mV e 1000 mV.Abstract : In this thesis, the classical CMOS Schmitt trigger (ST) operating in weak inversion is analyzed. The complete DC voltage transfer characteristic is determined, including analytical expressions for the internal node voltage. The resulting voltage transfer characteristic of the ST presents a continuous output behavior even when hysteresis is present. In this case, the output voltage characteristic between the hysteresis limits is formed by a metastable segment, which can be explained in terms of the negative resistance of the NMOS and PMOS subcircuits of the ST. The minimum supply voltage at which hysteresis appears is determined carrying out small-signal analysis, which is also used to estimate the hysteresis width. It is shown that hysteresis does not appear for supply voltages lower than 75 mV at 300 K. The analysis of the ST operating as a voltage amplifier was also carried out. Optimum transistor ratios were determined aiming at voltage gain maximization. The comparison of the ST with the standard CMOS inverter highlights the relative benefits and drawbacks of each one in ULV applications. It is also shown that the ST is theoretically capable of operating (voltage gain ?1) at a supply voltage as low as 31.5 mV, which is lower than the well-known limit of 36 mV, for the standard CMOS inverter. As an amplifier, the ST shows considerable higher absolute voltage gains than those showed by the conventional inverter at the same supply voltages. Three test chips were designed and fabricated to study the operation of the ST at supply voltages between 50 mV and 1000 mV

    Advanced CMOS Integrated Circuit Design and Application

    Get PDF
    The recent development of various application systems and platforms, such as 5G, B5G, 6G, and IoT, is based on the advancement of CMOS integrated circuit (IC) technology that enables them to implement high-performance chipsets. In addition to development in the traditional fields of analog and digital integrated circuits, the development of CMOS IC design and application in high-power and high-frequency operations, which was previously thought to be possible only with compound semiconductor technology, is a core technology that drives rapid industrial development. This book aims to highlight advances in all aspects of CMOS integrated circuit design and applications without discriminating between different operating frequencies, output powers, and the analog/digital domains. Specific topics in the book include: Next-generation CMOS circuit design and application; CMOS RF/microwave/millimeter-wave/terahertz-wave integrated circuits and systems; CMOS integrated circuits specially used for wireless or wired systems and applications such as converters, sensors, interfaces, frequency synthesizers/generators/rectifiers, and so on; Algorithm and signal-processing methods to improve the performance of CMOS circuits and systems

    Design and Analysis of Robust Low Voltage Static Random Access Memories.

    Full text link
    Static Random Access Memory (SRAM) is an indispensable part of most modern VLSI designs and dominates silicon area in many applications. In scaled technologies, maintaining high SRAM yield becomes more challenging since they are particularly vulnerable to process variations due to 1) the minimum sized devices used in SRAM bitcells and 2) the large array sizes. At the same time, low power design is a key focus throughout the semiconductor industry. Since low voltage operation is one of the most effective ways to reduce power consumption due to its quadratic relationship to energy savings, lowering the minimum operating voltage (Vmin) of SRAM has gained significant interest. This thesis presents four different approaches to design and analyze robust low voltage SRAM: SRAM analysis method improvement, SRAM bitcell development, SRAM peripheral optimization, and advance device selection. We first describe a novel yield estimation method for bit-interleaved voltage-scaled 8-T SRAMs. Instead of the traditional trade-off between write and read, the trade-off between write and half select disturb is analyzed. In addition, this analysis proposes a method to find an appropriate Write Word-Line (WWL) pulse width to maximize yield. Second, low leakage 10-T SRAM with speed compensation scheme is proposed. During sleep mode of a sensor application, SRAM retaining data cannot be shut down so it is important to minimize leakage in SRAM. This work adopts several leakage reduction techniques while compensating performance. Third, adaptive write architecture for low voltage 8-T SRAMs is proposed. By adaptively modulating WWL width and voltage level, it is possible to achieve low power consumption while maintaining high yield without excessive performance degradation. Finally, low power circuit design based on heterojunction tunneling transistors (HETTs) is discussed. HETTs have a steep subthreshold swing beneficial for low voltage operation. Device modeling and design of logic and SRAM are proposed.Ph.D.Electrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91569/1/daeyeonk_1.pd

    Multi-time analysis of CMOS circuits

    Get PDF
    Transient simulation of circuits with widely separated time constants and fast periodic excitations is not efficient because a long simulation period with small time steps is required. One approach to simulate the transient behaviour more efficiently is known as the Multi Partial Differential Equation (MPDE). In the MPDE the system ordinary differential equations that describe a circuit is transformed into a system of partial differential equations with two time variables, one for the fast periodic variations and another for the slow transient evolution. This method has been implemented in a general-purpose circuit simulator program named Carrot. This thesis presents progress towards the development that simulator. The main contributions of this thesis are the implementation and validation of MOSFET models in the simulator and the study of the performance of the MPDE approach (as currently implemented in Carrot) applied to complex CMOS circuits. An overview of concepts relevant for this work is presented, followed by a detailed description of the MOSFET model implementation. Next, the design of an integrated CMOS ring voltage-controlled oscillator is presented. This is followed by simulation case studies. The simulation results indicate that the MPDE approach can achieve orders of magnitude of improvement in simulation speed compared to regular transient analysis. This thesis concludes with recommendations for future research

    Multi-channel ultra-low-power receiver architecture for body area networks

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 85-91).In recently published integrated medical monitoring systems, a common thread is the high power consumption of the radio compared to the other system components. This observation is indicative of a natural place to attempt a reduction in system power. Narrowband receivers in-particular can enjoy significant power reduction by employing high-Q bulk acoustic resonators as channel select filters directly at RF, allowing down-stream analog processing to be simplified, resulting in better energy efficiency. But for communications in the ISM bands, it is important to employ multiple frequency channels to permit frequency-division-multiplexing and provide frequency diversity in the face of narrowband interferers. The high-Q nature of the resonators means that frequency tuning to other channels in the same band is nearly impossible; hence, a new architecture is required to address this challenge. A multi-channel ultra-low power OOK receiver for Body Area Networks (BANs) has been designed and tested. The receiver multiplexes three Film Bulk Acoustic Resonators (FBARs) to provide three channels of frequency discrimination, while at the same time offering competitive sensitivity and superior energy efficiency in this class of BAN receivers. The high-Q parallel resonance of each resonator determines the passband. The resonator's Q is on the order of 1000 and its center frequency is approximately 2.5 GHz, resulting in a -3 dB bandwidth of roughly 2.5 MHz with a very steep rolloff. Channels are selected by enabling the corresponding LNA and mixer pathway with switches, but a key benefit of this architecture is that the switches are not in series with the resonator and do not de-Q the resonance. The measured 1E-3 sensitivity is -64 dBm at 1 Mbps for an energy efficiency of 180 pJ/bit. The resonators are packaged beside the CMOS using wirebonds for the prototype.by Phillip Michel Nadeau.S.M
    corecore