199 research outputs found

    A Conservative Scheme with Optimal Error Estimates for a Multidimensional Space-Fractional Gross-Pitaevskii Equation

    Get PDF
    The present work departs from an extended form of the classical multi-dimensional Gross-Pitaevskii equation, which considers fractional derivatives of the Riesz type in space, a generalized potential function and angular momentum rotation. It is well known that the classical system possesses functionals which are preserved throughout time. It is easy to check that the generalized fractional model considered in this work also possesses conserved quantities, whence the development of conservative and efficient numerical schemes is pragmatically justified. Motivated by these facts, we propose a finite-difference method based on weighted-shifted Grünwald differences to approximate the solutions of the generalized Gross-Pitaevskii system. We provide here a discrete extension of the uniform Sobolev inequality to multiple dimensions, and show that the proposed method is capable of preserving discrete forms of the mass and the energy of the model. Moreover, we establish thoroughly the stability and the convergence of the technique, and provide some illustrative simulations to show that the method is capable of preserving the total mass and the total energy of the generalized system. © 2019 Ahmed S. Hendy et al., published by Sciendo 2019

    A Generalization of the Hopf-Cole Transformation

    Full text link
    A generalization of the Hopf-Cole transformation and its relation to the Burgers equation of integer order and the diffusion equation with quadratic nonlinearity are discussed. The explicit form of a particular analytical solution is presented. The existence of the travelling wave solution and the interaction of nonlocal perturbation are considered. The nonlocal generalizations of the one-dimensional diffusion equation with quadratic nonlinearity and of the Burgers equation are analyzed

    An efficient linearly-implicit energy-preserving scheme with fast solver for the fractional nonlinear wave equation

    Get PDF
    The paper considers the Hamiltonian structure and develops efficient energy-preserving schemes for the nonlinear wave equation with a fractional Laplacian operator. To this end, we first derive the Hamiltonian form of the equation by using the fractional variational derivative and then applying the finite difference method to the original equation to obtain a semi-discrete Hamiltonian system. Furthermore, the scalar auxiliary variable method and extrapolation technique is used to approximate a semi-discrete system to construct an efficient linearly-implicit energy-preserving scheme. A fast solver for the proposed scheme is presented to reduce CPU consumption. Ample numerical results are given to finally confirm the efficiency and conservation of the developed scheme

    Discrete monotone method for space-fractional nonlinear reaction–diffusion equations

    Get PDF
    A discrete monotone iterative method is reported here to solve a space-fractional nonlinear diffusion–reaction equation. More precisely, we propose a Crank–Nicolson discretization of a reaction–diffusion system with fractional spatial derivative of the Riesz type. The finite-difference scheme is based on the use of fractional-order centered differences, and it is solved using a monotone iterative technique. The existence and uniqueness of solutions of the numerical model are analyzed using this approach, along with the technique of upper and lower solutions. This methodology is employed also to prove the main numerical properties of the technique, namely, the consistency, stability, and convergence. As an application, the particular case of the space-fractional Fisher’s equation is theoretically analyzed in full detail. In that case, the monotone iterative method guarantees the preservation of the positivity and the boundedness of the numerical approximations. Various numerical examples are provided to illustrate the validity of the numerical approximations. More precisely, we provide an extensive series of comparisons against other numerical methods available in the literature, we show detailed numerical analyses of convergence in time and in space against fractional and integer-order models, and we provide studies on the robustness and the numerical performance of the discrete monotone method. © 2019, The Author(s).Russian Foundation for Basic Research, RFBR: 19-01-00019Consejo Nacional de Ciencia y Tecnología, CONACYT: A1-S-45928The first author would like to acknowledge the financial support of the National Council for Science and Technology of Mexico (CONACYT). The second (and corresponding) author acknowledges financial support from CONACYT through grant A1-S-45928. ASH is financed by RFBR Grant 19-01-00019

    A class of damping models preserving eigenspaces for linear conservative port-Hamiltonian systems

    Get PDF
    For conservative mechanical systems, the so-called Caughey series are known to define the class of damping matrices that preserve eigenspaces. In particular, for finite-dimensional systems, these matrices prove to be a polynomial of one reduced matrix, which depends on the mass and stiffness matrices. Damping is ensured whatever the eigenvalues of the conservative problem if and only if the polynomial is positive for positive scalar values. This paper first recasts this result in the port-Hamiltonian framework by introducing a port variable corresponding to internal energy dissipation (resistive element). Moreover, this formalism naturally allows to cope with systems including gyroscopic effects (gyrators). Second, generalizations to the infinite-dimensional case are considered. They consists of extending the previous polynomial class to rational functions and more general functions of operators (instead of matrices), once the appropriate functional framework has been defined. In this case, the resistive element is modelled by a given static operator, such as an elliptic PDE. These results are illustrated on several PDE examples: the Webster horn equation, the Bernoulli beam equation; the damping models under consideration are fluid, structural, rational and generalized fractional Laplacian or bi-Laplacian

    Nonlinear Evolution Equations: Analysis and Numerics

    Get PDF
    The workshop was devoted to the analytical and numerical investigation of nonlinear evolution equations. The main aim was to stimulate a closer interaction between experts in analytical and numerical methods for areas such as wave and Schrödinger equations or the Navier–Stokes equations and fluid dynamics

    On the bilateral preconditioning for an L2-type all-at-once system arising from time-space fractional Bloch-Torrey equations

    Full text link
    Time-space fractional Bloch-Torrey equations (TSFBTEs) are developed by some researchers to investigate the relationship between diffusion and fractional-order dynamics. In this paper, we first propose a second-order implicit difference scheme for TSFBTEs by employing the recently proposed L2-type formula [A. A. Alikhanov, C. Huang, Appl. Math. Comput. (2021) 126545]. Then, we prove the stability and the convergence of the proposed scheme. Based on such a numerical scheme, an L2-type all-at-once system is derived. In order to solve this system in a parallel-in-time pattern, a bilateral preconditioning technique is designed to accelerate the convergence of Krylov subspace solvers according to the special structure of the coefficient matrix of the system. We theoretically show that the condition number of the preconditioned matrix is uniformly bounded by a constant for the time fractional order α(0,0.3624)\alpha \in (0,0.3624). Numerical results are reported to show the efficiency of our method.Comment: 24 pages, 6 tables, 4 figure
    corecore