108,868 research outputs found

    Sum Spectral Efficiency Maximization in Massive MIMO Systems: Benefits from Deep Learning

    Full text link
    This paper investigates the joint data and pilot power optimization for maximum sum spectral efficiency (SE) in multi-cell Massive MIMO systems, which is a non-convex problem. We first propose a new optimization algorithm, inspired by the weighted minimum mean square error (MMSE) approach, to obtain a stationary point in polynomial time. We then use this algorithm together with deep learning to train a convolutional neural network to perform the joint data and pilot power control in sub-millisecond runtime, making it suitable for online optimization in real multi-cell Massive MIMO systems. The numerical result demonstrates that the solution obtained by the neural network is 1%1\% less than the stationary point for four-cell systems, while the sum SE loss is 2%2\% in a nine-cell system.Comment: 4 figures, 1 table. Accepted by ICC 2019. arXiv admin note: text overlap with arXiv:1901.0362

    Finding Competitive Network Architectures Within a Day Using UCT

    Full text link
    The design of neural network architectures for a new data set is a laborious task which requires human deep learning expertise. In order to make deep learning available for a broader audience, automated methods for finding a neural network architecture are vital. Recently proposed methods can already achieve human expert level performances. However, these methods have run times of months or even years of GPU computing time, ignoring hardware constraints as faced by many researchers and companies. We propose the use of Monte Carlo planning in combination with two different UCT (upper confidence bound applied to trees) derivations to search for network architectures. We adapt the UCT algorithm to the needs of network architecture search by proposing two ways of sharing information between different branches of the search tree. In an empirical study we are able to demonstrate that this method is able to find competitive networks for MNIST, SVHN and CIFAR-10 in just a single GPU day. Extending the search time to five GPU days, we are able to outperform human architectures and our competitors which consider the same types of layers
    corecore