2,071 research outputs found

    Machine Learning And Image Processing For Noise Removal And Robust Edge Detection In The Presence Of Mixed Noise

    Get PDF
    The central goal of this dissertation is to design and model a smoothing filter based on the random single and mixed noise distribution that would attenuate the effect of noise while preserving edge details. Only then could robust, integrated and resilient edge detection methods be deployed to overcome the ubiquitous presence of random noise in images. Random noise effects are modeled as those that could emanate from impulse noise, Gaussian noise and speckle noise. In the first step, evaluation of methods is performed based on an exhaustive review on the different types of denoising methods which focus on impulse noise, Gaussian noise and their related denoising filters. These include spatial filters (linear, non-linear and a combination of them), transform domain filters, neural network-based filters, numerical-based filters, fuzzy based filters, morphological filters, statistical filters, and supervised learning-based filters. In the second step, switching adaptive median and fixed weighted mean filter (SAMFWMF) which is a combination of linear and non-linear filters, is introduced in order to detect and remove impulse noise. Then, a robust edge detection method is applied which relies on an integrated process including non-maximum suppression, maximum sequence, thresholding and morphological operations. The results are obtained on MRI and natural images. In the third step, a combination of transform domain-based filter which is a combination of dual tree – complex wavelet transform (DT-CWT) and total variation, is introduced in order to detect and remove Gaussian noise as well as mixed Gaussian and Speckle noise. Then, a robust edge detection is applied in order to track the true edges. The results are obtained on medical ultrasound and natural images. In the fourth step, a smoothing filter, which is a feed-forward convolutional network (CNN) is introduced to assume a deep architecture, and supported through a specific learning algorithm, l2 loss function minimization, a regularization method, and batch normalization all integrated in order to detect and remove impulse noise as well as mixed impulse and Gaussian noise. Then, a robust edge detection is applied in order to track the true edges. The results are obtained on natural images for both specific and non-specific noise-level

    Integrating IoT and Novel Approaches to Enhance Electromagnetic Image Quality using Modern Anisotropic Diffusion and Speckle Noise Reduction Techniques

    Get PDF
    Electromagnetic imaging is becoming more important in many sectors, and this requires high-quality pictures for reliable analysis. This study makes use of the complementary relationship between IoT and current image processing methods to improve the quality of electromagnetic images. The research presents a new framework for connecting Internet of Things sensors to imaging equipment, allowing for instantaneous input and adjustment. At the same time, the suggested system makes use of sophisticated anisotropic diffusion algorithms to bring out key details and hide noise in electromagnetic pictures. In addition, a cutting-edge technique for reducing speckle noise is used to combat this persistent issue in electromagnetic imaging. The effectiveness of the suggested system was determined via a comparison to standard imaging techniques. There was a noticeable improvement in visual sharpness, contrast, and overall clarity without any loss of information, as shown by the results. Incorporating IoT sensors also facilitated faster calibration and real-time modifications, which opened up new possibilities for use in contexts with a high degree of variation. In fields where electromagnetic imaging plays a crucial role, such as medicine, remote sensing, and aerospace, the ramifications of this study are far-reaching. Our research demonstrates how the Internet of Things (IoT) and cutting-edge image processing have the potential to dramatically improve the functionality and versatility of electromagnetic imaging systems

    Digits Recognition on Medical Device

    Get PDF
    With the rapid development of mobile health, mechanisms for automatic data input are becoming increasingly important for mobile health apps. In these apps, users are often required to input data frequently, especially numbers, from medical devices such as glucometers and blood pressure meters. However, these simple tasks are tedious and prone to error. Even though some Bluetooth devices can make those input operations easier, they are not popular enough due to being expensive and requiring complicated protocol support. Therefore, we propose an automatic procedure to recognize the digits on the screen of medical devices with smartphone cameras. The whole procedure includes several “standard” components in computer vision: image enhancement, the region-of-interest detection, and text recognition. Previous works existed for each component, but they have various weaknesses that lead to a low recognition rate. We proposed several novel enhancements in each component. Experiment results suggest that our enhanced procedure outperforms the procedure of applying optical character recognition directly from 6.2% to 62.1%. This procedure can be adopted (with human verification) to recognize the digits on the screen of medical devices with smartphone cameras

    Image Restoration

    Get PDF
    This book represents a sample of recent contributions of researchers all around the world in the field of image restoration. The book consists of 15 chapters organized in three main sections (Theory, Applications, Interdisciplinarity). Topics cover some different aspects of the theory of image restoration, but this book is also an occasion to highlight some new topics of research related to the emergence of some original imaging devices. From this arise some real challenging problems related to image reconstruction/restoration that open the way to some new fundamental scientific questions closely related with the world we interact with

    Techniques for enhancing digital images

    Get PDF
    The images obtain from either research studies or optical instruments are often corrupted with noise. Image denoising involves the manipulation of image data to produce a visually high quality image. This thesis reviews the existing denoising algorithms and the filtering approaches available for enhancing images and/or data transmission. Spatial-domain and Transform-domain digital image filtering algorithms have been used in the past to suppress different noise models. The different noise models can be either additive or multiplicative. Selection of the denoising algorithm is application dependent. It is necessary to have knowledge about the noise present in the image so as to select the appropriated denoising algorithm. Noise models may include Gaussian noise, Salt and Pepper noise, Speckle noise and Brownian noise. The Wavelet Transform is similar to the Fourier transform with a completely different merit function. The main difference between Wavelet transform and Fourier transform is that, in the Wavelet Transform, Wavelets are localized in both time and frequency. In the standard Fourier Transform, Wavelets are only localized in frequency. Wavelet analysis consists of breaking up the signal into shifted and scales versions of the original (or mother) Wavelet. The Wiener Filter (mean squared estimation error) finds implementations as a LMS filter (least mean squares), RLS filter (recursive least squares), or Kalman filter. Quantitative measure (metrics) of the comparison of the denoising algorithms is provided by calculating the Peak Signal to Noise Ratio (PSNR), the Mean Square Error (MSE) value and the Mean Absolute Error (MAE) evaluation factors. A combination of metrics including the PSNR, MSE, and MAE are often required to clearly assess the model performance

    Statistical and Graph-Based Signal Processing: Fundamental Results and Application to Cardiac Electrophysiology

    Get PDF
    The goal of cardiac electrophysiology is to obtain information about the mechanism, function, and performance of the electrical activities of the heart, the identification of deviation from normal pattern and the design of treatments. Offering a better insight into cardiac arrhythmias comprehension and management, signal processing can help the physician to enhance the treatment strategies, in particular in case of atrial fibrillation (AF), a very common atrial arrhythmia which is associated to significant morbidities, such as increased risk of mortality, heart failure, and thromboembolic events. Catheter ablation of AF is a therapeutic technique which uses radiofrequency energy to destroy atrial tissue involved in the arrhythmia sustenance, typically aiming at the electrical disconnection of the of the pulmonary veins triggers. However, recurrence rate is still very high, showing that the very complex and heterogeneous nature of AF still represents a challenging problem. Leveraging the tools of non-stationary and statistical signal processing, the first part of our work has a twofold focus: firstly, we compare the performance of two different ablation technologies, based on contact force sensing or remote magnetic controlled, using signal-based criteria as surrogates for lesion assessment. Furthermore, we investigate the role of ablation parameters in lesion formation using the late-gadolinium enhanced magnetic resonance imaging. Secondly, we hypothesized that in human atria the frequency content of the bipolar signal is directly related to the local conduction velocity (CV), a key parameter characterizing the substrate abnormality and influencing atrial arrhythmias. Comparing the degree of spectral compression among signals recorded at different points of the endocardial surface in response to decreasing pacing rate, our experimental data demonstrate a significant correlation between CV and the corresponding spectral centroids. However, complex spatio-temporal propagation pattern characterizing AF spurred the need for new signals acquisition and processing methods. Multi-electrode catheters allow whole-chamber panoramic mapping of electrical activity but produce an amount of data which need to be preprocessed and analyzed to provide clinically relevant support to the physician. Graph signal processing has shown its potential on a variety of applications involving high-dimensional data on irregular domains and complex network. Nevertheless, though state-of-the-art graph-based methods have been successful for many tasks, so far they predominantly ignore the time-dimension of data. To address this shortcoming, in the second part of this dissertation, we put forth a Time-Vertex Signal Processing Framework, as a particular case of the multi-dimensional graph signal processing. Linking together the time-domain signal processing techniques with the tools of GSP, the Time-Vertex Signal Processing facilitates the analysis of graph structured data which also evolve in time. We motivate our framework leveraging the notion of partial differential equations on graphs. We introduce joint operators, such as time-vertex localization and we present a novel approach to significantly improve the accuracy of fast joint filtering. We also illustrate how to build time-vertex dictionaries, providing conditions for efficient invertibility and examples of constructions. The experimental results on a variety of datasets suggest that the proposed tools can bring significant benefits in various signal processing and learning tasks involving time-series on graphs. We close the gap between the two parts illustrating the application of graph and time-vertex signal processing to the challenging case of multi-channels intracardiac signals
    corecore