294 research outputs found

    A structural classification of protein-protein interactions for detection of convergently evolved motifs and for prediction of protein binding sites on sequence level

    Get PDF
    BACKGROUND: A long-standing challenge in the post-genomic era of Bioinformatics is the prediction of protein-protein interactions, and ultimately the prediction of protein functions. The problem is intrinsically harder, when only amino acid sequences are available, but a solution is more universally applicable. So far, the problem of uncovering protein-protein interactions has been addressed in a variety of ways, both experimentally and computationally. MOTIVATION: The central problem is: How can protein complexes with solved threedimensional structure be utilized to identify and classify protein binding sites and how can knowledge be inferred from this classification such that protein interactions can be predicted for proteins without solved structure? The underlying hypothesis is that protein binding sites are often restricted to a small number of residues, which additionally often are well-conserved in order to maintain an interaction. Therefore, the signal-to-noise ratio in binding sites is expected to be higher than in other parts of the surface. This enables binding site detection in unknown proteins, when homology based annotation transfer fails. APPROACH: The problem is addressed by first investigating how geometrical aspects of domain-domain associations can lead to a rigorous structural classification of the multitude of protein interface types. The interface types are explored with respect to two aspects: First, how do interface types with one-sided homology reveal convergently evolved motifs? Second, how can sequential descriptors for local structural features be derived from the interface type classification? Then, the use of sequential representations for binding sites in order to predict protein interactions is investigated. The underlying algorithms are based on machine learning techniques, in particular Hidden Markov Models. RESULTS: This work includes a novel approach to a comprehensive geometrical classification of domain interfaces. Alternative structural domain associations are found for 40% of all family-family interactions. Evaluation of the classification algorithm on a hand-curated set of interfaces yielded a precision of 83% and a recall of 95%. For the first time, a systematic screen of convergently evolved motifs in 102.000 protein-protein interactions with structural information is derived. With respect to this dataset, all cases related to viral mimicry of human interface bindings are identified. Finally, a library of 740 motif descriptors for binding site recognition - encoded as Hidden Markov Models - is generated and cross-validated. Tests for the significance of motifs are provided. The usefulness of descriptors for protein-ligand binding sites is demonstrated for the case of "ATP-binding", where a precision of 89% is achieved, thus outperforming comparable motifs from PROSITE. In particular, a novel descriptor for a P-loop variant has been used to identify ATP-binding sites in 60 protein sequences that have not been annotated before by existing motif databases

    Beauty Is in the Eye of the Beholder: Proteins Can Recognize Binding Sites of Homologous Proteins in More than One Way

    Get PDF
    Understanding the mechanisms of protein–protein interaction is a fundamental problem with many practical applications. The fact that different proteins can bind similar partners suggests that convergently evolved binding interfaces are reused in different complexes. A set of protein complexes composed of non-homologous domains interacting with homologous partners at equivalent binding sites was collected in 2006, offering an opportunity to investigate this point. We considered 433 pairs of protein–protein complexes from the ABAC database (AB and AC binary protein complexes sharing a homologous partner A) and analyzed the extent of physico-chemical similarity at the atomic and residue level at the protein–protein interface. Homologous partners of the complexes were superimposed using Multiprot, and similar atoms at the interface were quantified using a five class grouping scheme and a distance cut-off. We found that the number of interfacial atoms with similar properties is systematically lower in the non-homologous proteins than in the homologous ones. We assessed the significance of the similarity by bootstrapping the atomic properties at the interfaces. We found that the similarity of binding sites is very significant between homologous proteins, as expected, but generally insignificant between the non-homologous proteins that bind to homologous partners. Furthermore, evolutionarily conserved residues are not colocalized within the binding sites of non-homologous proteins. We could only identify a limited number of cases of structural mimicry at the interface, suggesting that this property is less generic than previously thought. Our results support the hypothesis that different proteins can interact with similar partners using alternate strategies, but do not support convergent evolution

    Novel Peptide-Mediated Interactions Derived from High-Resolution 3-Dimensional Structures

    Get PDF
    Many biological responses to intra- and extracellular stimuli are regulated through complex networks of transient protein interactions where a globular domain in one protein recognizes a linear peptide from another, creating a relatively small contact interface. These peptide stretches are often found in unstructured regions of proteins, and contain a consensus motif complementary to the interaction surface displayed by their binding partners. While most current methods for the de novo discovery of such motifs exploit their tendency to occur in disordered regions, our work here focuses on another observation: upon binding to their partner domain, motifs adopt a well-defined structure. Indeed, through the analysis of all peptide-mediated interactions of known high-resolution three-dimensional (3D) structure, we found that the structure of the peptide may be as characteristic as the consensus motif, and help identify target peptides even though they do not match the established patterns. Our analyses of the structural features of known motifs reveal that they tend to have a particular stretched and elongated structure, unlike most other peptides of the same length. Accordingly, we have implemented a strategy based on a Support Vector Machine that uses this features, along with other structure-encoded information about binding interfaces, to search the set of protein interactions of known 3D structure and to identify unnoticed peptide-mediated interactions among them. We have also derived consensus patterns for these interactions, whenever enough information was available, and compared our results with established linear motif patterns and their binding domains. Finally, to cross-validate our identification strategy, we scanned interactome networks from four model organisms with our newly derived patterns to see if any of them occurred more often than expected. Indeed, we found significant over-representations for 64 domain-motif interactions, 46 of which had not been described before, involving over 6,000 interactions in total for which we could suggest the molecular details determining the binding

    MotifCluster: an interactive online tool for clustering and visualizing sequences using shared motifs

    Get PDF
    MotifCluster finds related motifs in a set of sequences and clusters the sequences into families using the motifs they contain

    Active Site Detection by Spatial Conformity and Electrostatic Analysis—Unravelling a Proteolytic Function in Shrimp Alkaline Phosphatase

    Get PDF
    Computational methods are increasingly gaining importance as an aid in identifying active sites. Mostly these methods tend to have structural information that supplement sequence conservation based analyses. Development of tools that compute electrostatic potentials has further improved our ability to better characterize the active site residues in proteins. We have described a computational methodology for detecting active sites based on structural and electrostatic conformity - CataLytic Active Site Prediction (CLASP). In our pipelined model, physical 3D signature of any particular enzymatic function as defined by its active sites is used to obtain spatially congruent matches. While previous work has revealed that catalytic residues have large pKa deviations from standard values, we show that for a given enzymatic activity, electrostatic potential difference (PD) between analogous residue pairs in an active site taken from different proteins of the same family are similar. False positives in spatially congruent matches are further pruned by PD analysis where cognate pairs with large deviations are rejected. We first present the results of active site prediction by CLASP for two enzymatic activities - β-lactamases and serine proteases, two of the most extensively investigated enzymes. The results of CLASP analysis on motifs extracted from Catalytic Site Atlas (CSA) are also presented in order to demonstrate its ability to accurately classify any protein, putative or otherwise, with known structure. The source code and database is made available at www.sanchak.com/clasp/. Subsequently, we probed alkaline phosphatases (AP), one of the well known promiscuous enzymes, for additional activities. Such a search has led us to predict a hitherto unknown function of shrimp alkaline phosphatase (SAP), where the protein acts as a protease. Finally, we present experimental evidence of the prediction by CLASP by showing that SAP indeed has protease activity in vitro

    PCalign: a method to quantify physicochemical similarity of protein-protein interfaces

    Get PDF
    Abstract Background Structural comparison of protein-protein interfaces provides valuable insights into the functional relationship between proteins, which may not solely arise from shared evolutionary origin. A few methods that exist for such comparative studies have focused on structural models determined at atomic resolution, and may miss out interesting patterns present in large macromolecular complexes that are typically solved by low-resolution techniques. Results We developed a coarse-grained method, PCalign, to quantitatively evaluate physicochemical similarities between a given pair of protein-protein interfaces. This method uses an order-independent algorithm, geometric hashing, to superimpose the backbone atoms of a given pair of interfaces, and provides a normalized scoring function, PC-score, to account for the extent of overlap in terms of both geometric and chemical characteristics. We demonstrate that PCalign outperforms existing methods, and additionally facilitates comparative studies across models of different resolutions, which are not accommodated by existing methods. Furthermore, we illustrate potential application of our method to recognize interesting biological relationships masked by apparent lack of structural similarity. Conclusions PCalign is a useful method in recognizing shared chemical and spatial patterns among protein-protein interfaces. It outperforms existing methods for high-quality data, and additionally facilitates comparison across structural models with different levels of details with proven robustness against noise.http://deepblue.lib.umich.edu/bitstream/2027.42/110905/1/12859_2015_Article_471.pd

    PCalign: a method to quantify physicochemical similarity of protein-protein interfaces

    Full text link
    Abstract Background Structural comparison of protein-protein interfaces provides valuable insights into the functional relationship between proteins, which may not solely arise from shared evolutionary origin. A few methods that exist for such comparative studies have focused on structural models determined at atomic resolution, and may miss out interesting patterns present in large macromolecular complexes that are typically solved by low-resolution techniques. Results We developed a coarse-grained method, PCalign, to quantitatively evaluate physicochemical similarities between a given pair of protein-protein interfaces. This method uses an order-independent algorithm, geometric hashing, to superimpose the backbone atoms of a given pair of interfaces, and provides a normalized scoring function, PC-score, to account for the extent of overlap in terms of both geometric and chemical characteristics. We demonstrate that PCalign outperforms existing methods, and additionally facilitates comparative studies across models of different resolutions, which are not accommodated by existing methods. Furthermore, we illustrate potential application of our method to recognize interesting biological relationships masked by apparent lack of structural similarity. Conclusions PCalign is a useful method in recognizing shared chemical and spatial patterns among protein-protein interfaces. It outperforms existing methods for high-quality data, and additionally facilitates comparison across structural models with different levels of details with proven robustness against noise.http://deepblue.lib.umich.edu/bitstream/2027.42/134734/1/12859_2015_Article_471.pd

    Efficient search and comparison algorithms for 3D protein binding site retrieval and structure alignment from large-scale databases

    Get PDF
    Finding similar 3D structures is crucial for discovering potential structural, evolutionary, and functional relationships among proteins. As the number of known protein structures has dramatically increased, traditional methods can no longer provide the life science community with the adequate informatics capability needed to conduct large-scale and complex analyses. A suite of high-throughput and accurate protein structure search and comparison methods is essential. To meet the needs of the community, we develop several bioinformatics methods for protein binding site comparison and global structure alignment. First, we developed an efficient protein binding site search that is based on extracting geometric features both locally and globally. The main idea of this work was to capture spatial relationships among landmarks of binding site surfaces and bfuild a vocabulary of visual words to represent the characteristics of the surfaces. A vector model was then used to speed up the search of similar surfaces that share similar visual words with the query interface. Second, we developed an approach for accurate protein binding site comparison. Our algorithm provides an accurate binding site alignment by applying a two-level heuristic process which progressively refines alignment results from coarse surface point level to accurate residue atom level. This setting allowed us to explore different combinations of pairs of corresponding residues, thus improving the alignment quality of the binding site surfaces. Finally, we introduced a parallel algorithm for global protein structure alignment. Specifically, to speed up the time-consuming structure alignment process of protein 3D structures, we designed a parallel protein structure alignment framework to exploit the parallelism of Graphics Processing Units (GPUs). As a general-purpose GPU platform, the framework is capable of parallelizing traditional structure alignment algorithms. Our findings can be applied in various research areas, such as prediction of protein inte
    corecore