1,311 research outputs found

    Content Delivery Latency of Caching Strategies for Information-Centric IoT

    Full text link
    In-network caching is a central aspect of Information-Centric Networking (ICN). It enables the rapid distribution of content across the network, alleviating strain on content producers and reducing content delivery latencies. ICN has emerged as a promising candidate for use in the Internet of Things (IoT). However, IoT devices operate under severe constraints, most notably limited memory. This means that nodes cannot indiscriminately cache all content; instead, there is a need for a caching strategy that decides what content to cache. Furthermore, many applications in the IoT space are timesensitive; therefore, finding a caching strategy that minimises the latency between content request and delivery is desirable. In this paper, we evaluate a number of ICN caching strategies in regards to latency and hop count reduction using IoT devices in a physical testbed. We find that the topology of the network, and thus the routing algorithm used to generate forwarding information, has a significant impact on the performance of a given caching strategy. To the best of our knowledge, this is the first study that focuses on latency effects in ICN-IoT caching while using real IoT hardware, and the first to explicitly discuss the link between routing algorithm, network topology, and caching effects.Comment: 10 pages, 9 figures, journal pape

    Cloud transactions and caching for improved performance in clouds and DTNs

    Get PDF
    In distributed transactional systems deployed over some massively decentralized cloud servers, access policies are typically replicated. Interdependencies ad inconsistencies among policies need to be addressed as they can affect performance, throughput and accuracy. Several stringent levels of policy consistency constraints and enforcement approaches to guarantee the trustworthiness of transactions on cloud servers are proposed. We define a look-up table to store policy versions and the concept of Tree-Based Consistency approach to maintain a tree structure of the servers. By integrating look-up table and the consistency tree based approach, we propose an enhanced version of Two-phase validation commit (2PVC) protocol integrated with the Paxos commit protocol with reduced or almost the same performance overhead without affecting accuracy and precision. A new caching scheme has been proposed which takes into consideration Military/Defense applications of Delay-tolerant Networks (DTNs) where data that need to be cached follows a whole different priority levels. In these applications, data popularity can be defined not only based on request frequency, but also based on the importance like who created and ranked point of interests in the data, when and where it was created; higher rank data belonging to some specific location may be more important though frequency of those may not be higher than more popular lower priority data. Thus, our caching scheme is designed by taking different requirements into consideration for DTN networks for defense applications. The performance evaluation shows that our caching scheme reduces the overall access latency, cache miss and usage of cache memory when compared to using caching schemes --Abstract, page iv

    Routing efficiency in wireless sensor-actor networks considering semi-automated architecture

    Get PDF
    Wireless networks have become increasingly popular and advances in wireless communications and electronics have enabled the development of different kind of networks such as Mobile Ad-hoc Networks (MANETs), Wireless Sensor Networks (WSNs) and Wireless Sensor-Actor Networks (WSANs). These networks have different kind of characteristics, therefore new protocols that fit their features should be developed. We have developed a simulation system to test MANETs, WSNs and WSANs. In this paper, we consider the performance behavior of two protocols: AODV and DSR using TwoRayGround model and Shadowing model for lattice and random topologies. We study the routing efficiency and compare the performance of two protocols for different scenarios. By computer simulations, we found that for large number of nodes when we used TwoRayGround model and random topology, the DSR protocol has a better performance. However, when the transmission rate is higher, the routing efficiency parameter is unstable.Peer ReviewedPostprint (published version

    Mobile Data Management

    Get PDF
    The management of data in the mobile computing environment offers new challenging problems. Existing software needs to be upgraded to accommodate this environment. To do so, the critical parameters need to be understood and defined. We have surveyed some problems and existing solution

    Hit and Bandwidth Optimal Caching for Wireless Data Access Networks

    Get PDF
    For many data access applications, the availability of the most updated information is a fundamental and rigid requirement. In spite of many technological improvements, in wireless networks, wireless channels (or bandwidth) are the most scarce resources and hence are expensive. Data access from remote sites heavily depends on these expensive resources. Due to affordable smart mobile devices and tremendous popularity of various Internet-based services, demand for data from these mobile devices are growing very fast. In many cases, it is becoming impossible for the wireless data service providers to satisfy the demand for data using the current network infrastructures. An efficient caching scheme at the client side can soothe the problem by reducing the amount of data transferred over the wireless channels. However, an update event makes the associated cached data objects obsolete and useless for the applications. Frequencies of data update, as well as data access play essential roles in cache access and replacement policies. Intuitively, frequently accessed and infrequently updated objects should be given higher preference while preserving in the cache. However, modeling this intuition is challenging, particularly in a network environment where updates are injected by both the server and the clients, distributed all over networks. In this thesis, we strive to make three inter-related contributions. Firstly, we propose two enhanced cache access policies. The access policies ensure strong consistency of the cached data objects through proactive or reactive interactions with the data server. At the same time, these policies collect information about access and update frequencies of hosted objects to facilitate efficient deployment of the cache replacement policy. Secondly, we design a replacement policy which plays the decision maker role when there is a new object to accommodate in a fully occupied cache. The statistical information collected by the access policies enables the decision making process. This process is modeled around the idea of preserving frequently accessed but less frequently updated objects in the cache. Thirdly, we analytically show that a cache management scheme with the proposed replacement policy bundled with any of the cache access policies guarantees optimum amount of data transmission by increasing the number of effective hits in the cache system. Results from both analysis and our extensive simulations demonstrate that the proposed policies outperform the popular Least Frequently Used (LFU) policy in terms of both effective hits and bandwidth consumption. Moreover, our flexible system model makes the proposed policies equally applicable to applications for the existing 3G, as well as upcoming LTE, LTE Advanced and WiMAX wireless data access networks
    • …
    corecore