2,398 research outputs found

    Steiner t-designs for large t

    Full text link
    One of the most central and long-standing open questions in combinatorial design theory concerns the existence of Steiner t-designs for large values of t. Although in his classical 1987 paper, L. Teirlinck has shown that non-trivial t-designs exist for all values of t, no non-trivial Steiner t-design with t > 5 has been constructed until now. Understandingly, the case t = 6 has received considerable attention. There has been recent progress concerning the existence of highly symmetric Steiner 6-designs: It is shown in [M. Huber, J. Algebr. Comb. 26 (2007), pp. 453-476] that no non-trivial flag-transitive Steiner 6-design can exist. In this paper, we announce that essentially also no block-transitive Steiner 6-design can exist.Comment: 9 pages; to appear in: Mathematical Methods in Computer Science 2008, ed. by J.Calmet, W.Geiselmann, J.Mueller-Quade, Springer Lecture Notes in Computer Scienc

    Uniform hypergraphs containing no grids

    Get PDF
    A hypergraph is called an rƗr grid if it is isomorphic to a pattern of r horizontal and r vertical lines, i.e.,a family of sets {A1, ..., Ar, B1, ..., Br} such that Aiāˆ©Aj=Biāˆ©Bj=Ļ† for 1ā‰¤i<jā‰¤r and {pipe}Aiāˆ©Bj{pipe}=1 for 1ā‰¤i, jā‰¤r. Three sets C1, C2, C3 form a triangle if they pairwise intersect in three distinct singletons, {pipe}C1āˆ©C2{pipe}={pipe}C2āˆ©C3{pipe}={pipe}C3āˆ©C1{pipe}=1, C1āˆ©C2ā‰ C1āˆ©C3. A hypergraph is linear, if {pipe}Eāˆ©F{pipe}ā‰¤1 holds for every pair of edges Eā‰ F.In this paper we construct large linear r-hypergraphs which contain no grids. Moreover, a similar construction gives large linear r-hypergraphs which contain neither grids nor triangles. For rā‰„. 4 our constructions are almost optimal. These investigations are motivated by coding theory: we get new bounds for optimal superimposed codes and designs. Ā© 2013 Elsevier Ltd

    A coding problem for pairs of subsets

    Full text link
    Let XX be an nn--element finite set, 0<kā‰¤n/20<k\leq n/2 an integer. Suppose that {A1,A2}\{A_1,A_2\} and {B1,B2}\{B_1,B_2\} are pairs of disjoint kk-element subsets of XX (that is, āˆ£A1āˆ£=āˆ£A2āˆ£=āˆ£B1āˆ£=āˆ£B2āˆ£=k|A_1|=|A_2|=|B_1|=|B_2|=k, A1āˆ©A2=āˆ…A_1\cap A_2=\emptyset, B1āˆ©B2=āˆ…B_1\cap B_2=\emptyset). Define the distance of these pairs by d({A1,A2},{B1,B2})=minā”{āˆ£A1āˆ’B1āˆ£+āˆ£A2āˆ’B2āˆ£,āˆ£A1āˆ’B2āˆ£+āˆ£A2āˆ’B1āˆ£}d(\{A_1,A_2\} ,\{B_1,B_2\})=\min \{|A_1-B_1|+|A_2-B_2|, |A_1-B_2|+|A_2-B_1|\} . This is the minimum number of elements of A1āˆŖA2A_1\cup A_2 one has to move to obtain the other pair {B1,B2}\{B_1,B_2\}. Let C(n,k,d)C(n,k,d) be the maximum size of a family of pairs of disjoint subsets, such that the distance of any two pairs is at least dd. Here we establish a conjecture of Brightwell and Katona concerning an asymptotic formula for C(n,k,d)C(n,k,d) for k,dk,d are fixed and nā†’āˆžn\to \infty. Also, we find the exact value of C(n,k,d)C(n,k,d) in an infinite number of cases, by using special difference sets of integers. Finally, the questions discussed above are put into a more general context and a number of coding theory type problems are proposed.Comment: 11 pages (minor changes, and new citations added

    Distance-regular graphs

    Get PDF
    This is a survey of distance-regular graphs. We present an introduction to distance-regular graphs for the reader who is unfamiliar with the subject, and then give an overview of some developments in the area of distance-regular graphs since the monograph 'BCN' [Brouwer, A.E., Cohen, A.M., Neumaier, A., Distance-Regular Graphs, Springer-Verlag, Berlin, 1989] was written.Comment: 156 page
    • ā€¦
    corecore