8,985 research outputs found

    Partition bound is quadratically tight for product distributions

    Get PDF
    Let f:{0,1}n×{0,1}n{0,1}f : \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\} be a 2-party function. For every product distribution μ\mu on {0,1}n×{0,1}n\{0,1\}^n \times \{0,1\}^n, we show that CC0.49μ(f)=O((logprt1/8(f)loglogprt1/8(f))2),\mathsf{CC}^\mu_{0.49}(f) = O\left(\left(\log \mathsf{prt}_{1/8}(f) \cdot \log \log \mathsf{prt}_{1/8}(f)\right)^2\right), where CCεμ(f)\mathsf{CC}^\mu_\varepsilon(f) is the distributional communication complexity of ff with error at most ε\varepsilon under the distribution μ\mu and prt1/8(f)\mathsf{prt}_{1/8}(f) is the {\em partition bound} of ff, as defined by Jain and Klauck [{\em Proc. 25th CCC}, 2010]. We also prove a similar bound in terms of IC1/8(f)\mathsf{IC}_{1/8}(f), the {\em information complexity} of ff, namely, CC0.49μ(f)=O((IC1/8(f)logIC1/8(f))2).\mathsf{CC}^\mu_{0.49}(f) = O\left(\left(\mathsf{IC}_{1/8}(f) \cdot \log \mathsf{IC}_{1/8}(f)\right)^2\right). The latter bound was recently and independently established by Kol [{\em Proc. 48th STOC}, 2016] using a different technique. We show a similar result for query complexity under product distributions. Let g:{0,1}n{0,1}g : \{0,1\}^n \rightarrow \{0,1\} be a function. For every bit-wise product distribution μ\mu on {0,1}n\{0,1\}^n, we show that QC0.49μ(g)=O((logqprt1/8(g)loglogqprt1/8(g))2),\mathsf{QC}^\mu_{0.49}(g) = O\left(\left( \log \mathsf{qprt}_{1/8}(g) \cdot \log \log\mathsf{qprt}_{1/8}(g) \right)^2 \right), where QCεμ(g)\mathsf{QC}^\mu_{\varepsilon}(g) is the distributional query complexity of ff with error at most ε\varepsilon under the distribution μ\mu and qprt1/8(g))\mathsf{qprt}_{1/8}(g)) is the {\em query partition bound} of the function gg. Partition bounds were introduced (in both communication complexity and query complexity models) to provide LP-based lower bounds for randomized communication complexity and randomized query complexity. Our results demonstrate that these lower bounds are polynomially tight for {\em product} distributions.Comment: The previous version of the paper erroneously stated the main result in terms of relaxed partition number instead of partition numbe

    An Optimal Lower Bound on the Communication Complexity of Gap-Hamming-Distance

    Get PDF
    We prove an optimal Ω(n)\Omega(n) lower bound on the randomized communication complexity of the much-studied Gap-Hamming-Distance problem. As a consequence, we obtain essentially optimal multi-pass space lower bounds in the data stream model for a number of fundamental problems, including the estimation of frequency moments. The Gap-Hamming-Distance problem is a communication problem, wherein Alice and Bob receive nn-bit strings xx and yy, respectively. They are promised that the Hamming distance between xx and yy is either at least n/2+nn/2+\sqrt{n} or at most n/2nn/2-\sqrt{n}, and their goal is to decide which of these is the case. Since the formal presentation of the problem by Indyk and Woodruff (FOCS, 2003), it had been conjectured that the naive protocol, which uses nn bits of communication, is asymptotically optimal. The conjecture was shown to be true in several special cases, e.g., when the communication is deterministic, or when the number of rounds of communication is limited. The proof of our aforementioned result, which settles this conjecture fully, is based on a new geometric statement regarding correlations in Gaussian space, related to a result of C. Borell (1985). To prove this geometric statement, we show that random projections of not-too-small sets in Gaussian space are close to a mixture of translated normal variables

    Classical and quantum partition bound and detector inefficiency

    Full text link
    We study randomized and quantum efficiency lower bounds in communication complexity. These arise from the study of zero-communication protocols in which players are allowed to abort. Our scenario is inspired by the physics setup of Bell experiments, where two players share a predefined entangled state but are not allowed to communicate. Each is given a measurement as input, which they perform on their share of the system. The outcomes of the measurements should follow a distribution predicted by quantum mechanics; however, in practice, the detectors may fail to produce an output in some of the runs. The efficiency of the experiment is the probability that the experiment succeeds (neither of the detectors fails). When the players share a quantum state, this gives rise to a new bound on quantum communication complexity (eff*) that subsumes the factorization norm. When players share randomness instead of a quantum state, the efficiency bound (eff), coincides with the partition bound of Jain and Klauck. This is one of the strongest lower bounds known for randomized communication complexity, which subsumes all the known combinatorial and algebraic methods including the rectangle (corruption) bound, the factorization norm, and discrepancy. The lower bound is formulated as a convex optimization problem. In practice, the dual form is more feasible to use, and we show that it amounts to constructing an explicit Bell inequality (for eff) or Tsirelson inequality (for eff*). We give an example of a quantum distribution where the violation can be exponentially bigger than the previously studied class of normalized Bell inequalities. For one-way communication, we show that the quantum one-way partition bound is tight for classical communication with shared entanglement up to arbitrarily small error.Comment: 21 pages, extended versio

    The Partition Bound for Classical Communication Complexity and Query Complexity

    Full text link
    We describe new lower bounds for randomized communication complexity and query complexity which we call the partition bounds. They are expressed as the optimum value of linear programs. For communication complexity we show that the partition bound is stronger than both the rectangle/corruption bound and the \gamma_2/generalized discrepancy bounds. In the model of query complexity we show that the partition bound is stronger than the approximate polynomial degree and classical adversary bounds. We also exhibit an example where the partition bound is quadratically larger than polynomial degree and classical adversary bounds.Comment: 28 pages, ver. 2, added conten

    A Lower Bound for Sampling Disjoint Sets

    Get PDF
    Suppose Alice and Bob each start with private randomness and no other input, and they wish to engage in a protocol in which Alice ends up with a set x subseteq[n] and Bob ends up with a set y subseteq[n], such that (x,y) is uniformly distributed over all pairs of disjoint sets. We prove that for some constant beta0 of the uniform distribution over all pairs of disjoint sets of size sqrt{n}

    Simulation Theorems via Pseudorandom Properties

    Full text link
    We generalize the deterministic simulation theorem of Raz and McKenzie [RM99], to any gadget which satisfies certain hitting property. We prove that inner-product and gap-Hamming satisfy this property, and as a corollary we obtain deterministic simulation theorem for these gadgets, where the gadget's input-size is logarithmic in the input-size of the outer function. This answers an open question posed by G\"{o}\"{o}s, Pitassi and Watson [GPW15]. Our result also implies the previous results for the Indexing gadget, with better parameters than was previously known. A preliminary version of the results obtained in this work appeared in [CKL+17]
    corecore