221 research outputs found

    The Partition Bound for Classical Communication Complexity and Query Complexity

    Full text link
    We describe new lower bounds for randomized communication complexity and query complexity which we call the partition bounds. They are expressed as the optimum value of linear programs. For communication complexity we show that the partition bound is stronger than both the rectangle/corruption bound and the \gamma_2/generalized discrepancy bounds. In the model of query complexity we show that the partition bound is stronger than the approximate polynomial degree and classical adversary bounds. We also exhibit an example where the partition bound is quadratically larger than polynomial degree and classical adversary bounds.Comment: 28 pages, ver. 2, added conten

    Communication Complexity with Small Advantage

    Get PDF
    We study problems in randomized communication complexity when the protocol is only required to attain some small advantage over purely random guessing, i.e., it produces the correct output with probability at least epsilon greater than one over the codomain size of the function. Previously, Braverman and Moitra (STOC 2013) showed that the set-intersection function requires Theta(epsilon n) communication to achieve advantage epsilon. Building on this, we prove the same bound for several variants of set-intersection: (1) the classic "tribes" function obtained by composing with And (provided 1/epsilon is at most the width of the And), and (2) the variant where the sets are uniquely intersecting and the goal is to determine partial information about (say, certain bits of the index of) the intersecting coordinate

    Robust Bell Inequalities from Communication Complexity

    Get PDF
    The question of how large Bell inequality violations can be, for quantum distributions, has been the object of much work in the past several years. We say a Bell inequality is normalized if its absolute value does not exceed 1 for any classical (i.e. local) distribution. Upper and (almost) tight lower bounds have been given in terms of number of outputs of the distribution, number of inputs, and the dimension of the shared quantum states. In this work, we revisit normalized Bell inequalities together with another family: inefficiency-resistant Bell inequalities. To be inefficiency-resistant, the Bell value must not exceed 1 for any local distribution, including those that can abort. Both these families of Bell inequalities are closely related to communication complexity lower bounds. We show how to derive large violations from any gap between classical and quantum communication complexity, provided the lower bound on classical communication is proven using these lower bounds. This leads to inefficiency-resistant violations that can be exponential in the size of the inputs. Finally, we study resistance to noise and inefficiency for these Bell inequalities

    Studies in Communication Complexity and Semidefinite Programs

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    2D growth processes: SLE and Loewner chains

    Full text link
    This review provides an introduction to two dimensional growth processes. Although it covers a variety processes such as diffusion limited aggregation, it is mostly devoted to a detailed presentation of stochastic Schramm-Loewner evolutions (SLE) which are Markov processes describing interfaces in 2D critical systems. It starts with an informal discussion, using numerical simulations, of various examples of 2D growth processes and their connections with statistical mechanics. SLE is then introduced and Schramm's argument mapping conformally invariant interfaces to SLE is explained. A substantial part of the review is devoted to reveal the deep connections between statistical mechanics and processes, and more specifically to the present context, between 2D critical systems and SLE. Some of the SLE remarkable properties are explained, as well as the tools for computing with SLE. This review has been written with the aim of filling the gap between the mathematical and the physical literatures on the subject.Comment: A review on Stochastic Loewner evolutions for Physics Reports, 172 pages, low quality figures, better quality figures upon request to the authors, comments welcom

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum
    corecore