2,365 research outputs found

    Supervised Learning Models to Predict Stock Direction Within Different Sectors in a Bull and Bear Market

    Get PDF
    Forecasting stock market price movement is a well researched and an alluring topic within the machine learning and financial realm. Supervised machine learning algorithms such as Random Forest (RF) and Support Vector Machines (SVM) have been used independently to gain insight on the market. With such volatility in the market the scope of this study will utilized the RF and SVM in a very volatility market to determine if these models will perform at a high level or outperform each other in both markets. This relative study is performed on 16 stocks in 4 different sectors over the bear market ”housing crash” of 2008 . The model utilized technical indicators as the respective parameters to assist in predicting the stock price movement when determining the performance of each model. Despite the No Free Lunch Theorem stating one model can not out perform another model, the study displayed higher accuracy for the RF model. Each model was evaluated using the confusion metrics to calculate the precision, recall, and F1 score

    A system to predict the S&P 500 using a bio-inspired algorithm

    Get PDF
    The goal of this research was to develop an algorithmic system capable of predicting the directional trend of the S&P 500 financial index. The approach I have taken was inspired by the biology of the human retina. Extensive research has been published attempting to predict different financial markets using historical data, testing on an in-sample and trend basis with many employing sophisticated mathematical techniques. In reviewing and evaluating these in-sample methodologies, it became evident that this approach was unable to achieve sufficiently reliable prediction performance for commercial exploitation. For these reasons, I moved to an out-of-sample strategy and am able to predict tomorrow’s (t+1) directional trend of the S&P 500 at 55.1%. The key elements that underpin my bio-inspired out-of-sample system are: Identification of 51 financial market data (FMD) inputs, including other indices, currency pairs, swap rates, that affect the 500 component companies of the S&P 500. The use of an extensive historical data set, comprising the actual daily closing prices of the chosen 51 FMD inputs and S&P 500. The ability to compute this large data set in a time frame of less than 24 hours. The data set was fed into a linear regression algorithm to determine the predicted value of tomorrow’s (t+1) S&P 500 closing price. This process was initially carried out in MatLab which proved the concept of my approach, but (3) above was not met. In order to successfully meet the requirement of handling such a large data set to complete the prediction target on time, I decided to adopt a novel graphics processing unit (GPU) based computational architecture. Through extensive optimisation of my GPU engine, I was able to achieve a sufficient speed up of 150x to meet (3). In achieving my optimum directional trend of 55.1%, an extensive range of tests exploring a number of trade offs were carried out using an 8 year data set. The results I have obtained will form the basis of a commercial investment fund. It should be noted that my algorithm uses financial data of the past 60-days, and as such would not be able to predict rapid market changes such as a stock market crash

    Unemployment expectations: A socio-demographic analysis of the effect of news

    Get PDF
    © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/In this study, we evaluate the effect of news on consumer unemployment expectations for sixteen socio-demographic groups. To this end, we construct an unemployment sentiment indicator and extract news about several economic variables. By means of genetic programming we estimate symbolic regressions that link unemployment rates in the Euro Area to qualitative expectations about a wide range of economic variables. We then use the evolved expressions to compute unemployment expectations for each consumer group. We first assess the out-of-sample forecast accuracy of the evolved indicators, obtaining better forecasts for the leading unemployment sentiment indicator than for the coincident one. Results are similar across the different socio-demographic groups. The best forecast results are obtained for respondents between 30 and 49 years. The group where we observe the bigger differences among categories is the occupation, where the lowest forecast errors are obtained for the unemployed respondents. Next, we link news about inflation, industrial production, and stock markets to unemployment expectations. With this aim we match positive and negative news with consumers’ unemployment sentiment using a distributed lag regression model for each news item. We find asymmetries in the responses of consumers’ unemployment expectations to economic news: they tend to be stronger in the case of negative news, especially in the case of inflation.Peer ReviewedPostprint (author's final draft

    An investigation into the use of neural networks for the prediction of the stock exchange of Thailand

    Get PDF
    Stock markets are affected by many interrelated factors such as economics and politics at both national and international levels. Predicting stock indices and determining the set of relevant factors for making accurate predictions are complicated tasks. Neural networks are one of the popular approaches used for research on stock market forecast. This study developed neural networks to predict the movement direction of the next trading day of the Stock Exchange of Thailand (SET) index. The SET has yet to be studied extensively and research focused on the SET will contribute to understanding its unique characteristics and will lead to identifying relevant information to assist investment in this stock market. Experiments were carried out to determine the best network architecture, training method, and input data to use for this task. With regards network architecture, feedforward networks with three layers were used - an input layer, a hidden layer and an output layer - and networks with different numbers of nodes in the hidden layers were tested and compared. With regards training method, neural networks were trained with back-propagation and with genetic algorithms. With regards input data, three set of inputs, namely internal indicators, external indicators and a combination of both were used. The internal indicators are based on calculations derived from the SET while the external indicators are deemed to be factors beyond the control of the Thailand such as the Down Jones Index

    Reverse adaptive krill herd locally weighted support vector regression for forecasting and trading exchange traded funds

    Get PDF
    This study introduces a Reverse Adaptive Krill Herd - Locally Weighted Support Vector Regression (RKH-LSVR) model. The Reverse Adaptive Krill Herd (RKH) algorithm is a novel metaheuristic optimization technique inspired by the behaviour of krill herds. In RKH-LSVR, the RKH optimizes the locally weighted Support Vector Regression (LSVR) parameters by balancing the search between local and global optima. The proposed model is applied to the task of forecasting and trading six ETF stocks on a daily basis over the period 2010-2015. The RKH-LSVR's efficiency is benchmarked against a set of traditional SVR structures and simple linear and non-linear models. The trading application is designed in order to validate the robustness of the algorithm under study and to provide empirical evidence in favour of or against the Adaptive Market Hypothesis (AMH). In terms of the results, the RKH-LSVR outperforms its counterparts in terms of statistical accuracy and trading efficiency, while the time varying trading performance of the models under study validates the AMH theory

    New Approaches to Mapping Forest Conditions and Landscape Change from Moderate Resolution Remote Sensing Data across the Species-Rich and Structurally Diverse Atlantic Northern Forest of Northeastern North America

    Get PDF
    The sustainable management of forest landscapes requires an understanding of the functional relationships between management practices, changes in landscape conditions, and ecological response. This presents a substantial need of spatial information in support of both applied research and adaptive management. Satellite remote sensing has the potential to address much of this need, but forest conditions and patterns of change remain difficult to synthesize over large areas and long time periods. Compounding this problem is error in forest attribute maps and consequent uncertainty in subsequent analyses. The research described in this document is directed at these long-standing problems. Chapter 1 demonstrates a generalizable approach to the characterization of predominant patterns of forest landscape change. Within a ~1.5 Mha northwest Maine study area, a time series of satellite-derived forest harvest maps (1973-2010) served as the basis grouping landscape units according to time series of cumulative harvest area. Different groups reflected different harvest histories, which were linked to changes in landscape composition and configuration through time series of selected landscape metrics. Time series data resolved differences in landscape change attributable to passage of the Maine Forest Practices Act, a major change in forest policy. Our approach should be of value in supporting empirical landscape research. Perhaps the single most important source of uncertainty in the characterization of landscape conditions is over- or under-representation of class prevalence caused by prediction bias. Systematic error is similarly impactful in maps of continuous forest attributes, where regression dilution or attenuation bias causes the overestimation of low values and underestimation of high values. In both cases, patterns of error tend to produce more homogeneous characterizations of landscape conditions. Chapters 2 and 3 present a machine learning method designed to simultaneously reduce systematic and total error in continuous and categorical maps, respectively. By training support vector machines with a multi-objective genetic algorithm, attenuation bias was substantially reduced in regression models of tree species relative abundance (chapter 2), and prediction bias was effectively removed from classification models predicting tree species occurrence and forest disturbance (chapter 3). This approach is generalizable to other prediction problems, other regions, or other geospatial disciplines
    corecore