307 research outputs found

    Beyond shared memory loop parallelism in the polyhedral model

    Get PDF
    2013 Spring.Includes bibliographical references.With the introduction of multi-core processors, motivated by power and energy concerns, parallel processing has become main-stream. Parallel programming is much more difficult due to its non-deterministic nature, and because of parallel programming bugs that arise from non-determinacy. One solution is automatic parallelization, where it is entirely up to the compiler to efficiently parallelize sequential programs. However, automatic parallelization is very difficult, and only a handful of successful techniques are available, even after decades of research. Automatic parallelization for distributed memory architectures is even more problematic in that it requires explicit handling of data partitioning and communication. Since data must be partitioned among multiple nodes that do not share memory, the original memory allocation of sequential programs cannot be directly used. One of the main contributions of this dissertation is the development of techniques for generating distributed memory parallel code with parametric tiling. Our approach builds on important contributions to the polyhedral model, a mathematical framework for reasoning about program transformations. We show that many affine control programs can be uniformized only with simple techniques. Being able to assume uniform dependences significantly simplifies distributed memory code generation, and also enables parametric tiling. Our approach implemented in the AlphaZ system, a system for prototyping analyses, transformations, and code generators in the polyhedral model. The key features of AlphaZ are memory re-allocation, and explicit representation of reductions. We evaluate our approach on a collection of polyhedral kernels from the PolyBench suite, and show that our approach scales as well as PLuTo, a state-of-the-art shared memory automatic parallelizer using the polyhedral model. Automatic parallelization is only one approach to dealing with the non-deterministic nature of parallel programming that leaves the difficulty entirely to the compiler. Another approach is to develop novel parallel programming languages. These languages, such as X10, aim to provide highly productive parallel programming environment by including parallelism into the language design. However, even in these languages, parallel bugs remain to be an important issue that hinders programmer productivity. Another contribution of this dissertation is to extend the array dataflow analysis to handle a subset of X10 programs. We apply the result of dataflow analysis to statically guarantee determinism. Providing static guarantees can significantly increase programmer productivity by catching questionable implementations at compile-time, or even while programming

    Parallel Architectures for Planetary Exploration Requirements (PAPER)

    Get PDF
    The Parallel Architectures for Planetary Exploration Requirements (PAPER) project is essentially research oriented towards technology insertion issues for NASA's unmanned planetary probes. It was initiated to complement and augment the long-term efforts for space exploration with particular reference to NASA/LaRC's (NASA Langley Research Center) research needs for planetary exploration missions of the mid and late 1990s. The requirements for space missions as given in the somewhat dated Advanced Information Processing Systems (AIPS) requirements document are contrasted with the new requirements from JPL/Caltech involving sensor data capture and scene analysis. It is shown that more stringent requirements have arisen as a result of technological advancements. Two possible architectures, the AIPS Proof of Concept (POC) configuration and the MAX Fault-tolerant dataflow multiprocessor, were evaluated. The main observation was that the AIPS design is biased towards fault tolerance and may not be an ideal architecture for planetary and deep space probes due to high cost and complexity. The MAX concepts appears to be a promising candidate, except that more detailed information is required. The feasibility for adding neural computation capability to this architecture needs to be studied. Key impact issues for architectural design of computing systems meant for planetary missions were also identified

    Evaluating techniques for parallelization tuning in MPI, OmpSs and MPI/OmpSs

    Get PDF
    Parallel programming is used to partition a computational problem among multiple processing units and to define how they interact (communicate and synchronize) in order to guarantee the correct result. The performance that is achieved when executing the parallel program on a parallel architecture is usually far from the optimal: computation unbalance and excessive interaction among processing units often cause lost cycles, reducing the efficiency of parallel computation. In this thesis we propose techniques oriented to better exploit parallelism in parallel applications, with emphasis in techniques that increase asynchronism. Theoretically, this type of parallelization tuning promises multiple benefits. First, it should mitigate communication and synchronization delays, thus increasing the overall performance. Furthermore, parallelization tuning should expose additional parallelism and therefore increase the scalability of execution. Finally, increased asynchronism would provide higher tolerance to slower networks and external noise. In the first part of this thesis, we study the potential for tuning MPI parallelism. More specifically, we explore automatic techniques to overlap communication and computation. We propose a speculative messaging technique that increases the overlap and requires no changes of the original MPI application. Our technique automatically identifies the application’s MPI activity and reinterprets that activity using optimally placed non-blocking MPI requests. We demonstrate that this overlapping technique increases the asynchronism of MPI messages, maximizing the overlap, and consequently leading to execution speedup and higher tolerance to bandwidth reduction. However, in the case of realistic scientific workloads, we show that the overlapping potential is significantly limited by the pattern by which each MPI process locally operates on MPI messages. In the second part of this thesis, we study the potential for tuning hybrid MPI/OmpSs parallelism. We try to gain a better understanding of the parallelism of hybrid MPI/OmpSs applications in order to evaluate how these applications would execute on future machines and to predict the execution bottlenecks that are likely to emerge. We explore how MPI/OmpSs applications could scale on the parallel machine with hundreds of cores per node. Furthermore, we investigate how this high parallelism within each node would reflect on the network constraints. We especially focus on identifying critical code sections in MPI/OmpSs. We devised a technique that quickly evaluates, for a given MPI/OmpSs application and the selected target machine, which code section should be optimized in order to gain the highest performance benefits. Also, this thesis studies techniques to quickly explore the potential OmpSs parallelism inherent in applications. We provide mechanisms to easily evaluate potential parallelism of any task decomposition. Furthermore, we describe an iterative trialand-error approach to search for a task decomposition that will expose sufficient parallelism for a given target machine. Finally, we explore potential of automating the iterative approach by capturing the programmers’ experience into an expert system that can autonomously lead the search process. Also, throughout the work on this thesis, we designed development tools that can be useful to other researchers in the field. The most advanced of these tools is Tareador – a tool to help porting MPI applications to MPI/OmpSs programming model. Tareador provides a simple interface to propose some decomposition of a code into OmpSs tasks. Tareador dynamically calculates data dependencies among the annotated tasks, and automatically estimates the potential OmpSs parallelization. Furthermore, Tareador gives additional hints on how to complete the process of porting the application to OmpSs. Tareador already proved itself useful, by being included in the academic classes on parallel programming at UPC.La programación paralela consiste en dividir un problema de computación entre múltiples unidades de procesamiento y definir como interactúan (comunicación y sincronización) para garantizar un resultado correcto. El rendimiento de un programa paralelo normalmente está muy lejos de ser óptimo: el desequilibrio de la carga computacional y la excesiva interacción entre las unidades de procesamiento a menudo causa ciclos perdidos, reduciendo la eficiencia de la computación paralela. En esta tesis proponemos técnicas orientadas a explotar mejor el paralelismo en aplicaciones paralelas, poniendo énfasis en técnicas que incrementan el asincronismo. En teoría, estas técnicas prometen múltiples beneficios. Primero, tendrían que mitigar el retraso de la comunicación y la sincronización, y por lo tanto incrementar el rendimiento global. Además, la calibración de la paralelización tendría que exponer un paralelismo adicional, incrementando la escalabilidad de la ejecución. Finalmente, un incremente en el asincronismo proveería una tolerancia mayor a redes de comunicación lentas y ruido externo. En la primera parte de la tesis, estudiamos el potencial para la calibración del paralelismo a través de MPI. En concreto, exploramos técnicas automáticas para solapar la comunicación con la computación. Proponemos una técnica de mensajería especulativa que incrementa el solapamiento y no requiere cambios en la aplicación MPI original. Nuestra técnica identifica automáticamente la actividad MPI de la aplicación y la reinterpreta usando solicitudes MPI no bloqueantes situadas óptimamente. Demostramos que esta técnica maximiza el solapamiento y, en consecuencia, acelera la ejecución y permite una mayor tolerancia a las reducciones de ancho de banda. Aún así, en el caso de cargas de trabajo científico realistas, mostramos que el potencial de solapamiento está significativamente limitado por el patrón según el cual cada proceso MPI opera localmente en el paso de mensajes. En la segunda parte de esta tesis, exploramos el potencial para calibrar el paralelismo híbrido MPI/OmpSs. Intentamos obtener una comprensión mejor del paralelismo de aplicaciones híbridas MPI/OmpSs para evaluar de qué manera se ejecutarían en futuras máquinas. Exploramos como las aplicaciones MPI/OmpSs pueden escalar en una máquina paralela con centenares de núcleos por nodo. Además, investigamos cómo este paralelismo de cada nodo se reflejaría en las restricciones de la red de comunicación. En especia, nos concentramos en identificar secciones críticas de código en MPI/OmpSs. Hemos concebido una técnica que rápidamente evalúa, para una aplicación MPI/OmpSs dada y la máquina objetivo seleccionada, qué sección de código tendría que ser optimizada para obtener la mayor ganancia de rendimiento. También estudiamos técnicas para explorar rápidamente el paralelismo potencial de OmpSs inherente en las aplicaciones. Proporcionamos mecanismos para evaluar fácilmente el paralelismo potencial de cualquier descomposición en tareas. Además, describimos una aproximación iterativa para buscar una descomposición en tareas que mostrará el suficiente paralelismo en la máquina objetivo dada. Para finalizar, exploramos el potencial para automatizar la aproximación iterativa. En el trabajo expuesto en esta tesis hemos diseñado herramientas que pueden ser útiles para otros investigadores de este campo. La más avanzada es Tareador, una herramienta para ayudar a migrar aplicaciones al modelo de programación MPI/OmpSs. Tareador proporciona una interfaz simple para proponer una descomposición del código en tareas OmpSs. Tareador también calcula dinámicamente las dependencias de datos entre las tareas anotadas, y automáticamente estima el potencial de paralelización OmpSs. Por último, Tareador da indicaciones adicionales sobre como completar el proceso de migración a OmpSs. Tareador ya se ha mostrado útil al ser incluido en las clases de programación de la UPC

    Solution of partial differential equations on vector and parallel computers

    Get PDF
    The present status of numerical methods for partial differential equations on vector and parallel computers was reviewed. The relevant aspects of these computers are discussed and a brief review of their development is included, with particular attention paid to those characteristics that influence algorithm selection. Both direct and iterative methods are given for elliptic equations as well as explicit and implicit methods for initial boundary value problems. The intent is to point out attractive methods as well as areas where this class of computer architecture cannot be fully utilized because of either hardware restrictions or the lack of adequate algorithms. Application areas utilizing these computers are briefly discussed

    Using reconfigurable computing technology to accelerate matrix decomposition and applications

    Get PDF
    Matrix decomposition plays an increasingly significant role in many scientific and engineering applications. Among numerous techniques, Singular Value Decomposition (SVD) and Eigenvalue Decomposition (EVD) are widely used as factorization tools to perform Principal Component Analysis for dimensionality reduction and pattern recognition in image processing, text mining and wireless communications, while QR Decomposition (QRD) and sparse LU Decomposition (LUD) are employed to solve the dense or sparse linear system of equations in bioinformatics, power system and computer vision. Matrix decompositions are computationally expensive and their sequential implementations often fail to meet the requirements of many time-sensitive applications. The emergence of reconfigurable computing has provided a flexible and low-cost opportunity to pursue high-performance parallel designs, and the use of FPGAs has shown promise in accelerating this class of computation. In this research, we have proposed and implemented several highly parallel FPGA-based architectures to accelerate matrix decompositions and their applications in data mining and signal processing. Specifically, in this dissertation we describe the following contributions: • We propose an efficient FPGA-based double-precision floating-point architecture for EVD, which can efficiently analyze large-scale matrices. • We implement a floating-point Hestenes-Jacobi architecture for SVD, which is capable of analyzing arbitrary sized matrices. • We introduce a novel deeply pipelined reconfigurable architecture for QRD, which can be dynamically configured to perform either Householder transformation or Givens rotation in a manner that takes advantage of the strengths of each. • We design a configurable architecture for sparse LUD that supports both symmetric and asymmetric sparse matrices with arbitrary sparsity patterns. • By further extending the proposed hardware solution for SVD, we parallelize a popular text mining tool-Latent Semantic Indexing with an FPGA-based architecture. • We present a configurable architecture to accelerate Homotopy l1-minimization, in which the modification of the proposed FPGA architecture for sparse LUD is used at its core to parallelize both Cholesky decomposition and rank-1 update. Our experimental results using an FPGA-based acceleration system indicate the efficiency of our proposed novel architectures, with application and dimension-dependent speedups over an optimized software implementation that range from 1.5ÃÂ to 43.6ÃÂ in terms of computation time

    A Compiler-based Framework For Automatic Extraction Of Program Skeletons For Exascale Hardware/software Co-design

    Get PDF
    The design of high-performance computing architectures requires performance analysis of largescale parallel applications to derive various parameters concerning hardware design and software development. The process of performance analysis and benchmarking an application can be done in several ways with varying degrees of fidelity. One of the most cost-effective ways is to do a coarse-grained study of large-scale parallel applications through the use of program skeletons. The concept of a “program skeleton” that we discuss in this paper is an abstracted program that is derived from a larger program where source code that is determined to be irrelevant is removed for the purposes of the skeleton. In this work, we develop a semi-automatic approach for extracting program skeletons based on compiler program analysis. We demonstrate correctness of our skeleton extraction process by comparing details from communication traces, as well as show the performance speedup of using skeletons by running simulations in the SST/macro simulator. Extracting such a program skeleton from a large-scale parallel program requires a substantial amount of manual effort and often introduces human errors. We outline a semi-automatic approach for extracting program skeletons from large-scale parallel applications that reduces cost and eliminates errors inherent in manual approaches. Our skeleton generation approach is based on the use of the extensible and open-source ROSE compiler infrastructure that allows us to perform flow and dependency analysis on larger programs in order to determine what code can be removed from the program to generate a skeleton

    SPICE²: A Spatial, Parallel Architecture for Accelerating the Spice Circuit Simulator

    Get PDF
    Spatial processing of sparse, irregular floating-point computation using a single FPGA enables up to an order of magnitude speedup (mean 2.8X speedup) over a conventional microprocessor for the SPICE circuit simulator. We deliver this speedup using a hybrid parallel architecture that spatially implements the heterogeneous forms of parallelism available in SPICE. We decompose SPICE into its three constituent phases: Model-Evaluation, Sparse Matrix-Solve, and Iteration Control and parallelize each phase independently. We exploit data-parallel device evaluations in the Model-Evaluation phase, sparse dataflow parallelism in the Sparse Matrix-Solve phase and compose the complete design in streaming fashion. We name our parallel architecture SPICE²: Spatial Processors Interconnected for Concurrent Execution for accelerating the SPICE circuit simulator. We program the parallel architecture with a high-level, domain-specific framework that identifies, exposes and exploits parallelism available in the SPICE circuit simulator. This design is optimized with an auto-tuner that can scale the design to use larger FPGA capacities without expert intervention and can even target other parallel architectures with the assistance of automated code-generation. This FPGA architecture is able to outperform conventional processors due to a combination of factors including high utilization of statically-scheduled resources, low-overhead dataflow scheduling of fine-grained tasks, and overlapped processing of the control algorithms. We demonstrate that we can independently accelerate Model-Evaluation by a mean factor of 6.5X(1.4--23X) across a range of non-linear device models and Matrix-Solve by 2.4X(0.6--13X) across various benchmark matrices while delivering a mean combined speedup of 2.8X(0.2--11X) for the two together when comparing a Xilinx Virtex-6 LX760 (40nm) with an Intel Core i7 965 (45nm). With our high-level framework, we can also accelerate Single-Precision Model-Evaluation on NVIDIA GPUs, ATI GPUs, IBM Cell, and Sun Niagara 2 architectures. We expect approaches based on exploiting spatial parallelism to become important as frequency scaling slows down and modern processing architectures turn to parallelism (\eg multi-core, GPUs) due to constraints of power consumption. This thesis shows how to express, exploit and optimize spatial parallelism for an important class of problems that are challenging to parallelize.</p

    Compiling for parallel multithreaded computation on symmetric multiprocessors

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1998.Includes bibliographical references (p. 145-149).by Andrew Shaw.Ph.D
    corecore