4,337 research outputs found

    Internet Predictions

    Get PDF
    More than a dozen leading experts give their opinions on where the Internet is headed and where it will be in the next decade in terms of technology, policy, and applications. They cover topics ranging from the Internet of Things to climate change to the digital storage of the future. A summary of the articles is available in the Web extras section

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor

    An Incremental Navigation Localization Methodology for Application to Semi-Autonomous Mobile Robotic Platforms to Assist Individuals Having Severe Motor Disabilities.

    Get PDF
    In the present work, the author explores the issues surrounding the design and development of an intelligent wheelchair platform incorporating the semi-autonomous system paradigm, to meet the needs of individuals with severe motor disabilities. The author presents a discussion of the problems of navigation that must be solved before any system of this type can be instantiated, and enumerates the general design issues that must be addressed by the designers of systems of this type. This discussion includes reviews of various methodologies that have been proposed as solutions to the problems considered. Next, the author introduces a new navigation method, called Incremental Signature Recognition (ISR), for use by semi-autonomous systems in structured environments. This method is based on the recognition, recording, and tracking of environmental discontinuities: sensor reported anomalies in measured environmental parameters. The author then proposes a robust, redundant, dynamic, self-diagnosing sensing methodology for detecting and compensating for hidden failures of single sensors and sensor idiosyncrasies. This technique is optimized for the detection of spatial discontinuity anomalies. Finally, the author gives details of an effort to realize a prototype ISR based system, along with insights into the various implementation choices made

    Integrated Satellite-terrestrial networks for IoT: LoRaWAN as a Flying Gateway

    Get PDF
    When the Internet of Things (IoT) was introduced, it causes an immense change in human life. Recently, different IoT emerging use cases, which will involve an even higher number of connected devices aimed at collecting and sending data with different purposes and over different application scenarios, such as smart city, smart factory, and smart agriculture. In some cases, the terrestrial infrastructure is not enough to guarantee the typical performance indicators due to its design and intrinsic limitations. Coverage is an example, where the terrestrial infrastructure is not able to cover certain areas such as remote and rural areas. Flying technologies, such as communication satellites and Unmanned Aerial Vehicles (UAVs), can contribute to overcome the limitations of the terrestrial infrastructure, offering wider coverage, higher resilience and availability, and improving user\u2019s Quality of Experience (QoE). IoT can benefit from the UAVs and satellite integration in many ways, also beyond the coverage extension and the increase of the available bandwidth that these objects can offer. This thesis proposes the integration of both IoT and UAVs to guarantee the increased coverage in hard to reach and out of coverage areas. Its core focus addresses the development of the IoT flying gateway and data mule and testing both approaches to show their feasibility. The first approach for the integration of IoT and UAV results in the implementing of LoRa flying gateway with the aim of increasing the IoT communication protocols\u2019 coverage area to reach remote and rural areas. This flying gateway examines the feasibility for extending the coverage in a remote area and transmitting the data to the IoT cloud in real-time. Moreover, it considers the presence of a satellite between the gateway and the final destination for areas with no Internet connectivity and communication means such as WiFi, Ethernet, 4G, or LTE. The experimental results have shown that deploying a LoRa gateway on board a flying drone is an ideal option for the extension of the IoT network coverage in rural and remote areas. The second approach for the integration of the aforementioned technologies is the deployment of IoT data mule concept for LoRa networks. The difference here is the storage of the data on board of the gateway and not transmitting the data to the IoT cloud in real time. The aim of this approach is to receive the data from the LoRa sensors installed in a remote area, store them in the gateway up until this flying gateway is connected to the Internet. The experimental results have shown the feasibility of our flying data mule in terms of signal quality, data delivery, power consumption and gateway status. The third approach considers the security aspect in LoRa networks. The possible physical attacks that can be performed on any LoRa device can be performed once its location is revealed. Position estimation was carried out using one of the LoRa signal features: RSSI. The values of RSSI are fed to the Trilateration localization algorithm to estimate the device\u2019s position. Different outdoor tests were done with and without the drone, and the results have shown that RSSI is a low cost option for position estimation that can result in a slight error due to different environmental conditions that affect the signal quality. In conclusion, by adopting both IoT technology and UAV, this thesis advances the development of flying LoRa gateway and LoRa data mule for the aim of increasing the coverage of LoRa networks to reach rural and remote areas. Moreover, this research could be considered as the first step towards the development of high quality and performance LoRa flying gateway to be tested and used in massive LoRa IoT networks in rural and remote areas

    Launching an efficient participatory sensing campaign: A smart mobile device-based approach

    Get PDF
    PublishedJournal Article© 2015 ACM. Participatory sensing is a promising sensing paradigm that enables collection, processing, dissemination and analysis of the phenomena of interest by ordinary citizens through their handheld sensing devices. Participatory sensing has huge potential in many applications, such as smart transportation and air quality monitoring. However, participants may submit low-quality, misleading, inaccurate, or even malicious data if a participatory sensing campaign is not launched effectively. Therefore, it has become a significant issue to establish an efficient participatory sensing campaign for improving the data quality. This article proposes a novel five-tier framework of participatory sensing and addresses several technical challenges in this proposed framework including: (1) optimized deployment of data collection points (DC-points); and (2) efficient recruitment strategy of participants. Toward this end, the deployment of DC-points is formulated as an optimization problem with maximum utilization of sensor and then a Wise-Dynamic DC-points Deployment (WD3) algorithm is designed for high-quality sensing. Furthermore, to guarantee the reliable sensing data collection and communication, a trajectory-based strategy for participant recruitment is proposed to enable campaign organizers to identify well-suited participants for data sensing based on a joint consideration of temporal availability, trust, and energy. Extensive experiments and performance analysis of the proposed framework and associated algorithms are conducted. The results demonstrate that the proposed algorithm can achieve a good sensing coverage with a smaller number of DC-points, and the participants that are termed as social sensors are easily selected, to evaluate the feasibility and extensibility of the proposed recruitment strategies

    A mobile agent and message ferry mechanism based routing for delay tolerant network

    Get PDF
    Delay Tolerant Network (DTN) is a class of networks characterized by long delays, frequent disconnections and partitioning of communication paths between network nodes. Due to the frequent disconnection and network partitioning, the overall performance of the network will be deteriorated sharply. The problem is how to make the network fairly connected to optimize data routing and enhance the performance of a network. The aim of this study is to improve the performance of DTN by minimizing end-to-end delivery time and increasing message delivery ratio. Therefore, this research tackles the problem of intermittent connectivity and network partitioning by introducing Agents and Ferry Mechanism based Routing (AFMR). The AFMR comprises of two stages by applying two schemes: mobile agents and ferry mechanism. The agents' scheme is proposed to deal with intermittent connectivity and network partitioning by collecting the basic information about network connection such as signal strength, nodes position in the network and distance to the destination nodes to minimize end-to-end delivery time. The second stage is to increase the message delivery ratio by moving the nodes towards the path with available network connectivity based on agents' feedback. The AFMR is evaluated through simulations and the results are compared with those of Epidemic, PRoPHET and Message Ferry (MF). The findings demonstrate that AFMR is superior to all three, with respect to the average end-to-end delivery time, message delivery ratio, network load and message drop ratio, which are regarded as extremely important metrics for the evaluation of DTN routing protocols. The AFMR achieves improved network performance in terms of end-to-end delivery time (56.3%); enhanced message delivery ratio (60.0%); mitigation of message drop (63.5%) and reduced network load (26.1 %). The contributions of this thesis are to enhance the performance of DTN by significantly overcoming the intermittent connectivity and network partitioning problems in the network

    Application of service composition mechanisms to Future Networks architectures and Smart Grids

    Get PDF
    Aquesta tesi gira entorn de la hipòtesi de la metodologia i mecanismes de composició de serveis i com es poden aplicar a diferents camps d'aplicació per a orquestrar de manera eficient comunicacions i processos flexibles i sensibles al context. Més concretament, se centra en dos camps d'aplicació: la distribució eficient i sensible al context de contingut multimèdia i els serveis d'una xarxa elèctrica intel·ligent. En aquest últim camp es centra en la gestió de la infraestructura, cap a la definició d'una Software Defined Utility (SDU), que proposa una nova manera de gestionar la Smart Grid amb un enfocament basat en programari, que permeti un funcionament molt més flexible de la infraestructura de xarxa elèctrica. Per tant, revisa el context, els requisits i els reptes, així com els enfocaments de la composició de serveis per a aquests camps. Fa especial èmfasi en la combinació de la composició de serveis amb arquitectures Future Network (FN), presentant una proposta de FN orientada a serveis per crear comunicacions adaptades i sota demanda. També es presenten metodologies i mecanismes de composició de serveis per operar sobre aquesta arquitectura, i posteriorment, es proposa el seu ús (en conjunció o no amb l'arquitectura FN) en els dos camps d'estudi. Finalment, es presenta la investigació i desenvolupament realitzat en l'àmbit de les xarxes intel·ligents, proposant diverses parts de la infraestructura SDU amb exemples d'aplicació de composició de serveis per dissenyar seguretat dinàmica i flexible o l'orquestració i gestió de serveis i recursos dins la infraestructura de l'empresa elèctrica.Esta tesis gira en torno a la hipótesis de la metodología y mecanismos de composición de servicios y cómo se pueden aplicar a diferentes campos de aplicación para orquestar de manera eficiente comunicaciones y procesos flexibles y sensibles al contexto. Más concretamente, se centra en dos campos de aplicación: la distribución eficiente y sensible al contexto de contenido multimedia y los servicios de una red eléctrica inteligente. En este último campo se centra en la gestión de la infraestructura, hacia la definición de una Software Defined Utility (SDU), que propone una nueva forma de gestionar la Smart Grid con un enfoque basado en software, que permita un funcionamiento mucho más flexible de la infraestructura de red eléctrica. Por lo tanto, revisa el contexto, los requisitos y los retos, así como los enfoques de la composición de servicios para estos campos. Hace especial hincapié en la combinación de la composición de servicios con arquitecturas Future Network (FN), presentando una propuesta de FN orientada a servicios para crear comunicaciones adaptadas y bajo demanda. También se presentan metodologías y mecanismos de composición de servicios para operar sobre esta arquitectura, y posteriormente, se propone su uso (en conjunción o no con la arquitectura FN) en los dos campos de estudio. Por último, se presenta la investigación y desarrollo realizado en el ámbito de las redes inteligentes, proponiendo varias partes de la infraestructura SDU con ejemplos de aplicación de composición de servicios para diseñar seguridad dinámica y flexible o la orquestación y gestión de servicios y recursos dentro de la infraestructura de la empresa eléctrica.This thesis revolves around the hypothesis the service composition methodology and mechanisms and how they can be applied to different fields of application in order to efficiently orchestrate flexible and context-aware communications and processes. More concretely, it focuses on two fields of application that are the context-aware media distribution and smart grid services and infrastructure management, towards a definition of a Software-Defined Utility (SDU), which proposes a new way of managing the Smart Grid following a software-based approach that enable a much more flexible operation of the power infrastructure. Hence, it reviews the context, requirements and challenges of these fields, as well as the service composition approaches. It makes special emphasis on the combination of service composition with Future Network (FN) architectures, presenting a service-oriented FN proposal for creating context-aware on-demand communication services. Service composition methodology and mechanisms are also presented in order to operate over this architecture, and afterwards, proposed for their usage (in conjunction or not with the FN architecture) in the deployment of context-aware media distribution and Smart Grids. Finally, the research and development done in the field of Smart Grids is depicted, proposing several parts of the SDU infrastructure, with examples of service composition application for designing dynamic and flexible security for smart metering or the orchestration and management of services and data resources within the utility infrastructure

    A mobile code bundle extension for application-defined routing in delay and disruption tolerant networking

    Get PDF
    Grup de recerca SENDA (Security of Network and Distributed Applications)In this paper, we introduce software code to improve Delay and Disruption Tolerant Networking (DTN) performance. DTN is extremely useful when source and destination nodes are intermittently connected. DTN implementations use application-specific routing algorithms to overcome those limitations. However, current implementations do not support the concurrent execution of several routing algorithms. In this paper, we contribute to this issue providing a solution that consists on extending the messages being communicated by incorporating software code for forwarding, lifetime control and prioritisation purposes. Our proposal stems from the idea of moving the routing algorithms from the host to the message. This solution is compatible with Bundle Protocol (BP) and facilitates the deployment of applications with new routing needs. A real case study based on an emergency scenario is presented to provide details of a real implementation. Several simulations are presented to prove the feasibility and usability of the system and to analyse its performance in comparison to state-of-the-art approaches
    corecore