497 research outputs found

    A statistical inference method for the stochastic reachability analysis.

    Get PDF
    The main contribution of this paper is the characterization of reachability problem associated to stochastic hybrid systems in terms of imprecise probabilities. This provides the connection between reachability problem and Bayesian statistics. Using generalised Bayesian statistical inference, a new concept of conditional reach set probabilities is defined. Then possible algorithms to compute the reach set probabilities are derived

    Multi-aircraft conflict detection and resolution based on probabilistic reach sets

    Get PDF
    In this brief, a novel scheme to multi-aircraft conflict detection and resolution is introduced. A key feature of the proposed scheme is that uncertainty affecting the aircraft future positions along some look-ahead prediction horizon is accounted for via a probabilistic reachability analysis approach. In particular, ellipsoidal probabilistic reach sets are determined by formulating a chance-constrained optimization problem and solving it via a simulation-based method called scenario approach. Conflict detection is then performed by verifying if the ellipsoidal reach sets of different aircraft intersect. If a conflict is detected, then the aircraft flight plans are redesigned by solving a second-order cone program resting on the approximation of the ellipsoidal reach sets with spheres with constant radius along the look-ahead horizon. A bisection procedure allows one to determine the minimum radius such that the ellipsoidal reach sets of different aircraft along the corresponding new flight plans do not intersect. Some numerical examples are presented to show the efficacy of the proposed scheme

    Stability of Switched Stohastic Nonlinear Systems

    Get PDF

    Conflict Detection and Resolution for Future Air Transportation Management

    Get PDF
    With a Free Flight policy, the emphasis for air traffic control is shifting from active control to passive air traffic management with a policy of intervention by exception. Aircraft will be allowed to fly user preferred routes, as long as safety Alert Zones are not violated. If there is a potential conflict, two (or more) aircraft must be able to arrive at a solution for conflict resolution without controller intervention. Thus, decision aid tools are needed in Free Flight to detect and resolve conflicts, and several problems must be solved to develop such tools. In this report, we analyze and solve problems of proximity management, conflict detection, and conflict resolution under a Free Flight policy. For proximity management, we establish a system based on Delaunay Triangulations of aircraft at constant flight levels. Such a system provides a means for analyzing the neighbor relationships between aircraft and the nearby free space around air traffic which can be utilized later in conflict resolution. For conflict detection, we perform both 2-dimensional and 3-dimensional analyses based on the penetration of the Protected Airspace Zone. Both deterministic and non-deterministic analyses are performed. We investigate several types of conflict warnings including tactical warnings prior to penetrating the Protected Airspace Zone, methods based on the reachability overlap of both aircraft, and conflict probability maps to establish strategic Alert Zones around aircraft

    Free Flight Collision Risk Estimation by Sequential MC Simulation

    Full text link

    Stochastic hybrid system : modelling and verification

    Get PDF
    Hybrid systems now form a classical computational paradigm unifying discrete and continuous system aspects. The modelling, analysis and verification of these systems are very difficult. One way to reduce the complexity of hybrid system models is to consider randomization. The need for stochastic models has actually multiple motivations. Usually, when building models complete information is not available and we have to consider stochastic versions. Moreover, non-determinism and uncertainty are inherent to complex systems. The stochastic approach can be thought of as a way of quantifying non-determinism (by assigning a probability to each possible execution branch) and managing uncertainty. This is built upon to the - now classical - approach in algorithmics that provides polynomial complexity algorithms via randomization. In this thesis we investigate the stochastic hybrid systems, focused on modelling and analysis. We propose a powerful unifying paradigm that combines analytical and formal methods. Its applications vary from air traffic control to communication networks and healthcare systems. The stochastic hybrid system paradigm has an explosive development. This is because of its very powerful expressivity and the great variety of possible applications. Each hybrid system model can be randomized in different ways, giving rise to many classes of stochastic hybrid systems. Moreover, randomization can change profoundly the mathematical properties of discrete and continuous aspects and also can influence their interaction. Beyond the profound foundational and semantics issues, there is the possibility to combine and cross-fertilize techniques from analytic mathematics (like optimization, control, adaptivity, stability, existence and uniqueness of trajectories, sensitivity analysis) and formal methods (like bisimulation, specification, reachability analysis, model checking). These constitute the major motivations of our research. We investigate new models of stochastic hybrid systems and their associated problems. The main difference from the existing approaches is that we do not follow one way (based only on continuous or discrete mathematics), but their cross-fertilization. For stochastic hybrid systems we introduce concepts that have been defined only for discrete transition systems. Then, techniques that have been used in discrete automata now come in a new analytical fashion. This is partly explained by the fact that popular verification methods (like theorem proving) can hardly work even on probabilistic extensions of discrete systems. When the continuous dimension is added, the idea to use continuous mathematics methods for verification purposes comes in a natural way. The concrete contribution of this thesis has four major milestones: 1. A new and a very general model for stochastic hybrid systems; 2. Stochastic reachability for stochastic hybrid systems is introduced together with an approximating method to compute reach set probabilities; 3. Bisimulation for stochastic hybrid systems is introduced and relationship with reachability analysis is investigated. 4. Considering the communication issue, we extend the modelling paradigm
    • …
    corecore