1,040 research outputs found

    Graph matching: relax or not?

    Full text link
    We consider the problem of exact and inexact matching of weighted undirected graphs, in which a bijective correspondence is sought to minimize a quadratic weight disagreement. This computationally challenging problem is often relaxed as a convex quadratic program, in which the space of permutations is replaced by the space of doubly-stochastic matrices. However, the applicability of such a relaxation is poorly understood. We define a broad class of friendly graphs characterized by an easily verifiable spectral property. We prove that for friendly graphs, the convex relaxation is guaranteed to find the exact isomorphism or certify its inexistence. This result is further extended to approximately isomorphic graphs, for which we develop an explicit bound on the amount of weight disagreement under which the relaxation is guaranteed to find the globally optimal approximate isomorphism. We also show that in many cases, the graph matching problem can be further harmlessly relaxed to a convex quadratic program with only n separable linear equality constraints, which is substantially more efficient than the standard relaxation involving 2n equality and n^2 inequality constraints. Finally, we show that our results are still valid for unfriendly graphs if additional information in the form of seeds or attributes is allowed, with the latter satisfying an easy to verify spectral characteristic

    A Riemannian low-rank method for optimization over semidefinite matrices with block-diagonal constraints

    Get PDF
    We propose a new algorithm to solve optimization problems of the form minf(X)\min f(X) for a smooth function ff under the constraints that XX is positive semidefinite and the diagonal blocks of XX are small identity matrices. Such problems often arise as the result of relaxing a rank constraint (lifting). In particular, many estimation tasks involving phases, rotations, orthonormal bases or permutations fit in this framework, and so do certain relaxations of combinatorial problems such as Max-Cut. The proposed algorithm exploits the facts that (1) such formulations admit low-rank solutions, and (2) their rank-restricted versions are smooth optimization problems on a Riemannian manifold. Combining insights from both the Riemannian and the convex geometries of the problem, we characterize when second-order critical points of the smooth problem reveal KKT points of the semidefinite problem. We compare against state of the art, mature software and find that, on certain interesting problem instances, what we call the staircase method is orders of magnitude faster, is more accurate and scales better. Code is available.Comment: 37 pages, 3 figure

    Extending the square root method to account for additive forecast noise in ensemble methods

    Get PDF
    A square root approach is considered for the problem of accounting for model noise in the forecast step of the ensemble Kalman filter (EnKF) and related algorithms. The primary aim is to replace the method of simulated, pseudo-random additive so as to eliminate the associated sampling errors. The core method is based on the analysis step of ensemble square root filters, and consists in the deterministic computation of a transform matrix. The theoretical advantages regarding dynamical consistency are surveyed, applying equally well to the square root method in the analysis step. A fundamental problem due to the limited size of the ensemble subspace is discussed, and novel solutions that complement the core method are suggested and studied. Benchmarks from twin experiments with simple, low-order dynamics indicate improved performance over standard approaches such as additive, simulated noise, and multiplicative inflation

    Solving ill-posed inverse problems using iterative deep neural networks

    Full text link
    We propose a partially learned approach for the solution of ill posed inverse problems with not necessarily linear forward operators. The method builds on ideas from classical regularization theory and recent advances in deep learning to perform learning while making use of prior information about the inverse problem encoded in the forward operator, noise model and a regularizing functional. The method results in a gradient-like iterative scheme, where the "gradient" component is learned using a convolutional network that includes the gradients of the data discrepancy and regularizer as input in each iteration. We present results of such a partially learned gradient scheme on a non-linear tomographic inversion problem with simulated data from both the Sheep-Logan phantom as well as a head CT. The outcome is compared against FBP and TV reconstruction and the proposed method provides a 5.4 dB PSNR improvement over the TV reconstruction while being significantly faster, giving reconstructions of 512 x 512 volumes in about 0.4 seconds using a single GPU

    Manifold Optimization Over the Set of Doubly Stochastic Matrices: A Second-Order Geometry

    Get PDF
    Convex optimization is a well-established research area with applications in almost all fields. Over the decades, multiple approaches have been proposed to solve convex programs. The development of interior-point methods allowed solving a more general set of convex programs known as semi-definite programs and second-order cone programs. However, it has been established that these methods are excessively slow for high dimensions, i.e., they suffer from the curse of dimensionality. On the other hand, optimization algorithms on manifold have shown great ability in finding solutions to nonconvex problems in reasonable time. This paper is interested in solving a subset of convex optimization using a different approach. The main idea behind Riemannian optimization is to view the constrained optimization problem as an unconstrained one over a restricted search space. The paper introduces three manifolds to solve convex programs under particular box constraints. The manifolds, called the doubly stochastic, symmetric and the definite multinomial manifolds, generalize the simplex also known as the multinomial manifold. The proposed manifolds and algorithms are well-adapted to solving convex programs in which the variable of interest is a multidimensional probability distribution function. Theoretical analysis and simulation results testify the efficiency of the proposed method over state of the art methods. In particular, they reveal that the proposed framework outperforms conventional generic and specialized solvers, especially in high dimensions

    Phylogenetic toric varieties on graphs

    Get PDF
    We define phylogenetic projective toric model of a trivalent graph as a generalization of a binary symmetric model of a trivalent phylogenetic tree. Generators of the pro- jective coordinate ring of the models of graphs with one cycle are explicitly described. The phylogenetic models of graphs with the same topological invariants are deforma- tion equivalent and share the same Hilbert function. We also provide an algorithm to compute the Hilbert function.Comment: 36 pages, improved expositio
    corecore