165 research outputs found

    Analyzing the Improvements of Energy Management Systems for Hybrid Electric Vehicles Using a Systematic Literature Review: How Far Are These Controls from Rule-Based Controls Used in Commercial Vehicles?

    Get PDF
    Featured Application This work is useful for researchers interested in the study of energy management systems for hybrid electric vehicles. In addition, it is interesting for institutions related to the market of this type of vehicle. The hybridization of vehicles is a viable step toward overcoming the challenge of the reduction of emissions related to road transport all over the world. To take advantage of the emission reduction potential of hybrid electric vehicles (HEVs), the appropriate design of their energy management systems (EMSs) to control the power flow between the engine and the battery is essential. This work presents a systematic literature review (SLR) of the more recent works that developed EMSs for HEVs. The review is carried out subject to the following idea: although the development of novel EMSs that seek the optimum performance of HEVs is booming, in the real world, HEVs continue to rely on well-known rule-based (RB) strategies. The contribution of this work is to present a quantitative comparison of the works selected. Since several studies do not provide results of their models against commercial RB strategies, it is proposed, as another contribution, to complete their results using simulations. From these results, it is concluded that the improvement of the analyzed EMSs ranges roughly between 5% and 10% with regard to commercial RB EMSs; in comparison to the optimum, the analyzed EMSs are nearer to the optimum than commercial RB EMSs

    Predictive Energy Management in Connected Vehicles: Utilizing Route Information Preview for Energy Saving

    Get PDF
    This dissertation formulates algorithms that use preview information of road terrain and traffic flow for reducing energy use and emissions of modern vehicles with conventional or hybrid powertrains. Energy crisis, long term energy deficit, and more restrictive environmental protection policies require developing more efficient and cleaner vehicle powertrain systems. An alternative to making advanced technology engines or electrifying the vehicle powertrain is utilizing ambient terrain and traffic information in the energy management of vehicles, a topic which has not been emphasized in the past. Today\u27s advances in vehicular telematics and advances in GIS (Geographic Information System), GPS (Global Positioning Systems), ITS (Intelligent Transportation Systems), V2V (Vehicle to Vehicle) communication, and VII (Vehicle Infrastructure Integration ) create more opportunities for predicting a vehicle\u27s trip information with details such as the future road grade, the distance to the destination, speed constraints imposed by the traffic flow, which all can be utilized for better vehicle energy management. Optimal or near optimal decision-making based on this available information requires optimal control methods, whose fundamental theories were well studied in the past but are not directly applicable due to the complexity of real problems and uncertainty in the available preview information. This dissertation proposes the use of optimal control theories and tools including Pontryagin minimum principle, Dynamic Programming (DP) which is a numerical realization of Bellman\u27s principle of optimality, and Model Predictive Control (MPC) in the optimization-based control of hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and conventional vehicles based on preview of future route information. The dissertation includes three parts introduced as follows: First, the energy saving benefit in HEV energy management by previewing future terrain information and applying optimal control methods is explored. The potential gain in fuel economy is evaluated, if road grade information is integrated in energy management of hybrid vehicles. Real-world road geometry information is taken into account in power management decisions by using both Dynamic Programming (DP) and a standard Equivalent Consumption Minimization Strategy (ECMS), derived using Pontryagin minimum principle. Secondly, the contribution of different levels of preview to energy management of plug-in hybrid vehicles (PHEVs) is studied. The gains to fuel economy of plug-in hybrid vehicles with availability of velocity and terrain preview and knowledge of distance to the next charging station are investigated. Access to future driving information is classified into full, partial, or no future information and energy management strategies for real-time implementation with partial future preview are proposed. ECMS as well as Dynamic Programming (DP) is systematically utilized to handle the resulting optimal control problems with different levels of preview. We also study the benefit of future traffic flow information preview in improving the fuel economy of conventional vehicles by predictive control methods. According to the time-scale of the preview information and its importance to the driver, the energy optimization problem is decomposed into different levels. In the microscopic level, a model predictive controller as well as a car following model is employed for predictive adaptive cruise control by stochastically forecasting the driving behavior of the lead car. In the macroscopic level, we propose to incorporate the estimated macroscopic future traffic flow information and optimize the cost-to-go by utilizing a two-dimension Dynamic Programming (2D-DP). The algorithm yields the optimal trip velocity as the reference velocity for the driver or a low level controller to follow. Through the study, we show that energy use and emissions can be reduced considerably by using preview route information. The methodologies discussed in this dissertation provide an alternative mean for the automotive industry to develop more efficient and environmentally friendly vehicles by relying mostly on software and information and with minimal hardware investments

    Stochastic model predictive control for energy management of power-split plug-in hybrid electric vehicles based on reinforcement learning

    Get PDF
    In this paper, a stochastic model predictive control (MPC) method based on reinforcement learning is proposed for energy management of plug-in hybrid electric vehicles (PHEVs). Firstly, the power transfer of each component in a power-split PHEV is described in detail. Then an effective and convergent reinforcement learning controller is trained by the Q-learning algorithm according to the driving power distribution under multiple driving cycles. By constructing a multi-step Markov velocity prediction model, the reinforcement learning controller is embedded into the stochastic MPC controller to determine the optimal battery power in predicted time domain. Numerical simulation results verify that the proposed method achieves superior fuel economy that is close to that by stochastic dynamic programming method. In addition, the effective state of charge tracking in terms of different reference trajectories highlight that the proposed method is effective for online application requiring a fast calculation speed

    A Combined High-Efficiency Region Controller to Improve Fuel Consumption of Power-Split HEVs

    Get PDF
    An improved controller for the energy management system of a power-split hybrid electric vehicle (HEV) is developed with the objectives of minimizing fuel consumption and improving drivability. Considering the specific application of vehicles plying on scheduled trips such as public transport, this paper assumes that the controller is privileged with a priori knowledge of the estimated total tractive energy requirement and the duration of the journey. In comparison to a recently introduced constant high-efficiency region (CHER)-based controller, this paper demonstrates that further reductions in fuel consumption can be achieved under certain driving cycles by limiting the internal-combustion-engine (ICE) operation to a dynamically varying high-efficiency region and adopting state-of-charge (SOC) swing control for battery energy storage. The frequency of engine on/off is therefore directly decided by the size of the energy storage, allowable swing of the SOC, and the tractive energy required. Performances of the CHER and dynamic high-efficiency region (DHER) controllers are compared through simulations against the existing controller of a commercial vehicle. The results reveal that the DHER controller outperforms the other two controllers in terms of fuel consumption in highway-style-driving scenarios. Therefore, to minimize fuel consumption while improving drivability under all driving scenarios, this paper proposes to combine the CHER controller with the DHER controller such that the best features of both controllers can be utilized

    Hybrid and Electric Vehicles Optimal Design and Real-time Control based on Artificial Intelligence

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Design and implementation of machine learning techniques for modeling and managing battery energy storage systems

    Get PDF
    The fast technological evolution and industrialization that have interested the humankind since the fifties has caused a progressive and exponential increase of CO2 emissions and Earth temperature. Therefore, the research community and the political authorities have recognized the need of a deep technological revolution in both the transportation and the energy distribution systems to hinder climate changes. Thus, pure and hybrid electric powertrains, smart grids, and microgrids are key technologies for achieving the expected goals. Nevertheless, the development of the above mentioned technologies require very effective and performing Battery Energy Storage Systems (BESSs), and even more effective Battery Management Systems (BMSs). Considering the above background, this Ph.D. thesis has focused on the development of an innovative and advanced BMS that involves the use of machine learning techniques for improving the BESS effectiveness and efficiency. Great attention has been paid to the State of Charge (SoC) estimation problem, aiming at investigating solutions for achieving more accurate and reliable estimations. To this aim, the main contribution has concerned the development of accurate and flexible models of electrochemical cells. Three main modeling requirements have been pursued for ensuring accurate SoC estimations: insight on the cell physics, nonlinear approximation capability, and flexible system identification procedures. Thus, the research activity has aimed at fulfilling these requirements by developing and investigating three different modeling approaches, namely black, white, and gray box techniques. Extreme Learning Machines, Radial Basis Function Neural Networks, and Wavelet Neural Networks were considered among the black box models, but none of them were able to achieve satisfactory SoC estimation performances. The white box Equivalent Circuit Models (ECMs) have achieved better results, proving the benefit that the insight on the cell physics provides to the SoC estimation task. Nevertheless, it has appeared clear that the linearity of ECMs has reduced their effectiveness in the SoC task. Thus, the gray box Neural Networks Ensemble (NNE) and the white box Equivalent Neural Networks Circuit (ENNC) models have been developed aiming at exploiting the neural networks theory in order to achieve accurate models, ensuring at the same time very flexible system identification procedures together with nonlinear approximation capabilities. The performances of NNE and ENNC have been compelling. In particular, the white box ENNC has reached the most effective performances, achieving accurate SoC estimations, together with a simple architecture and a flexible system identification procedure. The outcome of this thesis makes it possible the development of an interesting scenario in which a suitable cloud framework provides remote assistance to several BMSs in order to adapt the managing algorithms to the aging of BESSs, even considering different and distinct applications

    Robust real-time control of a parallel hybrid electric vehicle

    Get PDF
    • …
    corecore