1,075 research outputs found

    Effect of Jitter on the Settling Time of Mesochronous Clock Retiming Circuits

    Full text link
    It is well known that timing jitter can degrade the bit error rate (BER) of receivers that recover the clock from input data. However, timing jitter can also result in an indefinite increase in the settling time of clock recovery circuits, particularly in low swing mesochronous systems. Mesochronous clock retiming circuits are required in repeaterless low swing on-chip interconnects. We first discuss how timing jitter can result in a large increase in the settling time of the clock recovery circuit. Next, the circuit is modelled as a Markov chain with absorbing states. The mean time to absorption of the Markov chain, which represents the mean settling time of the circuit, is determined. The model is validated through behavioural simulations of the circuit, the results of which match well with the model predictions. We consider circuits with (i) data dependent jitter, (ii) random jitter, and (iii) combination of both of them. We show that a mismatch between the strengths of up and down corrections of the retiming can reduce the settling time. In particular, a 10% mismatch can reduce the mean settling time by up to 40%. We leverage this fact toward improving the settling time performance, and propose useful techniques based on biased training sequences and mismatched charge pumps. We also present a coarse+fine clock retiming circuit, which can operate in coarse first mode, to reduce the settling time substantially. These fast settling retiming circuits are verified with circuit simulations.Comment: 23 pages, 40 figure

    통계적 주파수 검출기 기반 기준 주파수를 사용하지 않는 클록 및 데이터 복원 회로의 설계 방법론

    Get PDF
    학위논문(박사) -- 서울대학교대학원 : 공과대학 전기·정보공학부, 2022. 8. 정덕균.In this thesis, a design of a high-speed, power-efficient, wide-range clock and data recovery (CDR) without a reference clock is proposed. A frequency acquisition scheme using a stochastic frequency detector (SFD) based on the Alexander phase detector (PD) is utilized for the referenceless operation. Pat-tern histogram analysis is presented to analyze the frequency acquisition behavior of the SFD and verified by simulation. Based on the information obtained by pattern histogram analysis, SFD using autocovariance is proposed. With a direct-proportional path and a digital integral path, the proposed referenceless CDR achieves frequency lock at all measurable conditions, and the measured frequency acquisition time is within 7μs. The prototype chip has been fabricated in a 40-nm CMOS process and occupies an active area of 0.032 mm2. The proposed referenceless CDR achieves the BER of less than 10-12 at 32 Gb/s and exhibits an energy efficiency of 1.15 pJ/b at 32 Gb/s with a 1.0 V supply.본 논문은 기준 클럭이 없는 고속, 저전력, 광대역으로 동작하는 클럭 및 데이터 복원회로의 설계를 제안한다. 기준 클럭이 없는 동작을 위해서 알렉산더 위상 검출기에 기반한 통계적 주파수 검출기를 사용하는 주파수 획득 방식이 사용된다. 통계적 주파수 검출기의 주파수 추적 양상을 분석하기 위해 패턴 히스토그램 분석 방법론을 제시하였고 시뮬레이션을 통해 검증하였다. 패턴 히스토그램 분석을 통해 얻은 정보를 바탕으로 자기공분산을 이용한 통계적 주파수 검출기를 제안한다. 직접 비례 경로와 디지털 적분 경로를 통해 제안된 기준 클럭이 없는 클럭 및 데이터 복원회로는 모든 측정 가능한 조건에서 주파수 잠금을 달성하는 데 성공하였고, 모든 경우에서 측정된 주파수 추적 시간은 7μs 이내이다. 40-nm CMOS 공정을 이용하여 만들어진 칩은 0.032 mm2의 면적을 차지한다. 제안하는 클럭 및 데이터 복원회로는 32 Gb/s의 속도에서 비트에러율 10-12 이하로 동작하였고, 에너지 효율은 32Gb/s의 속도에서 1.0V 공급전압을 사용하여 1.15 pJ/b을 달성하였다.CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 THESIS ORGANIZATION 13 CHAPTER 2 BACKGROUNDS 14 2.1 CLOCKING ARCHITECTURES IN SERIAL LINK INTERFACE 14 2.2 GENERAL CONSIDERATIONS FOR CLOCK AND DATA RECOVERY 24 2.2.1 OVERVIEW 24 2.2.2 JITTER 26 2.2.3 CDR JITTER CHARACTERISTICS 33 2.3 CDR ARCHITECTURES 39 2.3.1 PLL-BASED CDR – WITH EXTERNAL REFERENCE CLOCK 39 2.3.2 DLL/PI-BASED CDR 44 2.3.3 PLL-BASED CDR – WITHOUT EXTERNAL REFERENCE CLOCK 47 2.4 FREQUENCY ACQUISITION SCHEME 50 2.4.1 TYPICAL FREQUENCY DETECTORS 50 2.4.1.1 DIGITAL QUADRICORRELATOR FREQUENCY DETECTOR 50 2.4.1.2 ROTATIONAL FREQUENCY DETECTOR 54 2.4.2 PRIOR WORKS 56 CHAPTER 3 DESIGN OF THE REFERENCELESS CDR USING SFD 58 3.1 OVERVIEW 58 3.2 PROPOSED FREQUENCY DETECTOR 62 3.2.1 MOTIVATION 62 3.2.2 PATTERN HISTOGRAM ANALYSIS 68 3.2.3 INTRODUCTION OF AUTOCOVARIANCE TO STOCHASTIC FREQUENCY DETECTOR 75 3.3 CIRCUIT IMPLEMENTATION 83 3.3.1 IMPLEMENTATION OF THE PROPOSED REFERENCELESS CDR 83 3.3.2 CONTINUOUS-TIME LINEAR EQUALIZER (CTLE) 85 3.3.3 DIGITALLY-CONTROLLED OSCILLATOR (DCO) 87 3.4 MEASUREMENT RESULTS 89 CHAPTER 4 CONCLUSION 99 APPENDIX A DETAILED FREQUENCY ACQUISITION WAVEFORMS OF THE PROPOSED SFD 100 BIBLIOGRAPHY 108 초 록 122박

    On the Estimation of Nonrandom Signal Coefficients from Jittered Samples

    Get PDF
    This paper examines the problem of estimating the parameters of a bandlimited signal from samples corrupted by random jitter (timing noise) and additive iid Gaussian noise, where the signal lies in the span of a finite basis. For the presented classical estimation problem, the Cramer-Rao lower bound (CRB) is computed, and an Expectation-Maximization (EM) algorithm approximating the maximum likelihood (ML) estimator is developed. Simulations are performed to study the convergence properties of the EM algorithm and compare the performance both against the CRB and a basic linear estimator. These simulations demonstrate that by post-processing the jittered samples with the proposed EM algorithm, greater jitter can be tolerated, potentially reducing on-chip ADC power consumption substantially.Comment: 11 pages, 8 figure

    최적 위상 검출 회로를 이용한 클럭 및 데이터 복원 회로에 관한 연구

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2014. 8. 김재하.Bang-bang phase detectors are widely used for today's high-speed communication circuits such as phase-locked loops (PLLs), delay-locked loops (DLLs) and clock-and-data recovery loops (CDRs) because it is simple, fast, accurate and amenable to digital implementations. However, its hard nonlinearity poses difficulties in design and analyses of the bang-bang controlled timing loops. Especially, dithering in bang-bang controlled CDRs sets conflicting requirements on the phase adjustment resolution as one tries to maximize the tracking bandwidth and minimize jitter. A fine phase step is helpful to minimize the dithering, but it requires circuits with finer resolution that consumes large power and area. In this background, this dissertation introduces an optimal phase detection technique that can minimize the effect of dithering without requiring fine phase resolution. A novel phase interval detector that looks for a phase interval enclosing the desired lock point is shown to find the optimal phase that minimizes the timing error without dithering. A digitally-controlled, phase-interpolating DLL-based CDR fabricated in 65nm CMOS demonstrates that it can achieve small area of 0.026mm^2 and low jitter of 41mUIp-p with a coarse phase adjustment step of 0.11UI, while dissipating only 8.4mW at 5Gbps. For the theoretic basis, various analysis techniques to understand bang-bang controlled timing loops are also presented. The proposed techniques are explained for both linearized loop and non-linear one, and applied to the evaluation of the proposed phase detection technique.1 Introduction 1 1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Thesis Contribution and Organization . . . . . . . . . . . . . . . . . 6 2 Pseudo-Linear Analysis of Bang-Bang Controlled Loops 9 2.1 Model of a Second-Order, Bang-Bang Controlled Timing Loop . . . 9 2.2 Necessary Condition for the Pseudo-Linear Analysis . . . . . . . . . 12 2.3 Derivation of Necessity Condition for the Pseudo-Linear Analysis . . 17 2.4 A Linearized Model of the Bang-Bang Phase Detector . . . . . . . . 18 2.5 Linearized Gain of a Bang-Bang Phase Detector for Jitter Transfer and Jitter Generation Analyses . . . . . . . . . . . . . . . . . . . . . 21 2.6 Jitter Transfer and Jitter Generation Analyses . . . . . . . . . . . . 29 2.7 Linearized Gains of a Bang-bang Phase Detector for Jitter Tolerance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.8 Jitter Tolerance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 41 3 Nonlinear Analysis of Bang-Bang Controlled Loops 48 3.1 Transient Analysis of Bang-Bang Controlled Timing Loops . . . . . 48 3.2 Phase-portrait Analysis of Bang-Bang Controlled Timing Loops . . . 51 3.3 Markov-chain Analysis of Bang-Bang Controlled Timing Loops . . . 53 3.4 Analysis of Clock-and-Data Recovery Circuits . . . . . . . . . . . . . 57 3.4.1 Prediction of Bit-Error Rate . . . . . . . . . . . . . . . . . . 57 3.4.2 Eect of Transition Density . . . . . . . . . . . . . . . . . . . 58 3.4.3 Eect of Decimation . . . . . . . . . . . . . . . . . . . . . . . 61 3.4.4 Analysis of Oversampling Phase Detectors . . . . . . . . . . . 66 4 Design of Ditherless Clock and Data Recovery Circuit 75 4.1 Optimal Phase Detection . . . . . . . . . . . . . . . . . . . . . . . . 75 4.2 Proposed Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.3 Analysis of the CDR with Phase Interval Detection . . . . . . . . . . 84 4.4 Circuit Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.4.1 Sampling Receiver . . . . . . . . . . . . . . . . . . . . . . . . 89 4.4.2 Phase Detector . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.4.3 Digital Loop Filter . . . . . . . . . . . . . . . . . . . . . . . . 95 4.4.4 Phase Locked-Loop . . . . . . . . . . . . . . . . . . . . . . . . 98 4.4.5 Phase Interpolator . . . . . . . . . . . . . . . . . . . . . . . . 99 4.5 Built-In Self-Test Circuit for Jitter Tolerance Measurement . . . . . 102 4.6 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5 Conclusion 114 References 116Docto

    Models predicting the performance of IC component or PCB channel during electromagnetic interference

    Get PDF
    This dissertation is composed of three papers, which cover the prediction of the characteristics of jitter due to crosstalk and due to simultaneous switching noise, and covers susceptibility of delay locked loop (DLL) to electromagnetic interference. In the first paper, an improved tail-fit de-convolution method is proposed for characterizing the impact of deterministic jitter in the presence of random jitter. A Wiener filter de-convolution method is also presented for extracting the characteristics of crosstalk induced jitter from measurements of total jitter made when the crosstalk sources were and were not present. The proposed techniques are shown to work well both in simulations and in measurements of a high-speed link. In the second paper, methods are developed to predict the statistical distribution of timing jitter due to dynamic currents drawn by an integrated circuit (IC) and the resulting power supply noise on the PCB. Distribution of dynamic currents is found through vectorless methods. Results demonstrate the approach can rapidly determine the average and standard deviation of the power supply noise voltage and the peak jitter within 5~15% error, which is more than sufficient for predicting the performance impact on integrated circuits. In the third paper, a model is developed to predict the susceptibility of a DLL to electromagnetic noise on the power supply. With the proposed analytical noise transfer function, peak to peak jitter and cycle to cycle jitter at the DLL output can be estimated, which can be use to predict when soft failures will occur and to better understand how to fix these failures. Simulation and measurement results demonstrate the accuracy of the DLL delay model. --Abstract, page iv

    Analysis of Phase Noise and Jitter in Ring Oscillators

    Get PDF
    Voltage controlled oscillators (VCOs) have gain paramount importance in frequency modulation (FM) and pulse modulation (PM) circuits, phase locked loops (PLLs), function generators, frequency synthesizers etc. which are vital for communication circuits. CMOS based ring oscillators have tuning range, tuning gain and phase noise as the important characteristics. The most difficult task is that variation of phase due to stochastic perturbations. Phase noise has been the designer’s primary concerned. The effect of oscillator’s noise is one of the most insightful issues in the designing of modern RF telecommunication systems. A low phase noise with minimum power dissipation is rapidly preferred criteria for the design of voltage controlled ring oscillators (VCROs). A very simple and precise analysis of different phase noise models of ring VCOs and their causes is analyzed in this paper. For each case, the flicker noise and the white noise component of phase noise and jitter are considered which limits the signal. The important elements that determine the phase noise in VCOs are the transistor's flicker noise ( noise), the output power level, and the quality factor (Q). A synchronized relationship among the effective noise components in the oscillatory circuits leads to good agreement for new design insights and also improves the performance. Keywords: Ring Oscillators, Voltage Controlled Oscillator, Voltage Controlled Ring Oscillator, Phase noise, jitter

    Digital PLL for ISM applications

    Get PDF
    In modern transceivers, a low power PLL is a key block. It is known that with the evolution of technology, lower power and high performance circuitry is a challenging demand. In this thesis, a low power PLL is developed in order not to exceed 2mW of total power consumption. It is composed by small area blocks which is one of the main demands. The blocks that compose the PLL are widely abridged and the final solution is shown, showing why it is employed. The VCO block is a Current-Starved Ring Oscillator with a frequency range from 400MHz to 1.5GHz, with a 300μW to approximately 660μW power consumption. The divider is composed by six TSPC D Flip-Flop in series, forming a divide-by-64 divider. The Phase-Detector is a Dual D Flip-Flop detector with a charge pump. The PLL has less than a 2us lock time and presents a output oscillation of 1GHz, as expected. It also has a total power consumption of 1.3mW, therefore fulfilling all the specifications. The main contributions of this thesis are that this PLL can be applied in ISM applications due to its covering frequency range and low cost 130nm CMOS technology

    Recent Trends in Communication Networks

    Get PDF
    In recent years there has been many developments in communication technology. This has greatly enhanced the computing power of small handheld resource-constrained mobile devices. Different generations of communication technology have evolved. This had led to new research for communication of large volumes of data in different transmission media and the design of different communication protocols. Another direction of research concerns the secure and error-free communication between the sender and receiver despite the risk of the presence of an eavesdropper. For the communication requirement of a huge amount of multimedia streaming data, a lot of research has been carried out in the design of proper overlay networks. The book addresses new research techniques that have evolved to handle these challenges
    corecore