143 research outputs found

    A stiffness-based quality measure for compliant grasps and fixtures

    Get PDF
    This paper presents a systematic approach to quantifying the effectiveness of compliant grasps and fixtures of an object. The approach is physically motivated and applies to the grasping of two- and three-dimensional objects by any number of fingers. The approach is based on a characterization of the frame-invariant features of a grasp or fixture stiffness matrix. In particular, we define a set of frame-invariant characteristic stiffness parameters, and provide physical and geometric interpretation for these parameters. Using a physically meaningful scheme to make the rotational and translational stiffness parameters comparable, we define a frame-invariant quality measure, which we call the stiffness quality measure. An example of a frictional grasp illustrates the effectiveness of the quality measure. We then consider the optimal grasping of frictionless polygonal objects by three and four fingers. Such frictionless grasps are useful in high-load fixturing applications, and their relative simplicity allows an efficient computation of the globally optimal finger arrangement. We compute the optimal finger arrangement in several examples, and use these examples to discuss properties that characterize the stiffness quality measure

    Constructing minimum deflection fixture arrangements using frame invariant norms

    Get PDF
    This paper describes a fixture planning method that minimizes object deflection under external loads. The method takes into account the natural compliance of the contacting bodies and applies to two-dimensional and three-dimensional quasirigid bodies. The fixturing method is based on a quality measure that characterizes the deflection of a fixtured object in response to unit magnitude wrenches. The object deflection measure is defined in terms of frame-invariant rigid body velocity and wrench norms and is therefore frame invariant. The object deflection measure is applied to the planning of optimal fixture arrangements of polygonal objects. We describe minimum-deflection fixturing algorithms for these objects, and make qualitative observations on the optimal arrangements generated by the algorithms. Concrete examples illustrate the minimum deflection fixturing method. Note to Practitioners-During fixturing, a workpiece needs to not only be stable against external perturbations, but must also stay within a specified tolerance in response to machining or assembly forces. This paper describes a fixture planning approach that minimizes object deflection under applied work loads. The paper describes how to take local material deformation effects into account, using a generic quasirigid contact model. Practical algorithms that compute the optimal fixturing arrangements of polygonal workpieces are described and examples are then presented

    Experiments in fixturing mechanics

    Get PDF
    This paper describes an experimental fixturing system wherein fixel reaction forces, workpiece loading, and workpiece displacements are measured during simulated fixturing operations. The system's configuration, its measurement principles, and tests to characterize its performance are summarized. This system is used to experimentally determine the relationship between workpiece displacement and variations in fixed preload force or workpiece loading. We compare the results against standard theories, and conclude that commonly used linear spring models do not accurately predict workpiece displacements, while a non-linear compliance model provides better predictive behavior

    Mobility of bodies in contact. II. How forces are generated bycurvature effects

    Get PDF
    For part I, see ibid., p.696-708. The paper considers how forces are produced by compliance and surface curvature effects in systems where an object a is kinematically immobilized to second-order by finger bodies Al,...,Ak. A class of configuration-space based elastic deformation models is introduced. Using these elastic deformation models, it is shown that any object which is kinematically immobilized to first or second-order is also dynamically locally asymptotically stable with respect to perturbations. Moreover, it is shown that for preloaded grasps kinematic immobility implies that the stiffness matrix of the grasp is positive definite. The stability result provides physical justification for using second-order effects for purposes of immobilization in practical applications. Simulations illustrate the concepts

    A task-dependent approach to minimum-deflection fixtures

    Get PDF
    Presents an approach to planning minimum-deflection fixtures for tasks whose characteristics are well understood. Based on an accurately defined notion of deflection, we define a quality measure that characterizes the workpiece's deflection with respect to a set of external wrenches determined by the tasks. A scheme is proposed to model task wrenches, which can be used for practical manufacturing operations. This task modelling scheme is then used to obtain a convenient formulation of the task-dependent quality measure, which allows the quality measure to be efficiently computed. An example is presented to show that our approach can be effectively employed for planning compliant fixtures that are best suited to specified tasks

    Computation and analysis of natural compliance in fixturing and grasping arrangements

    Get PDF
    This paper computes and analyzes the natural compliance of fixturing and grasping arrangements. Traditionally, linear-spring contact models have been used to determine the natural compliance of multiple contact arrangements. However, these models are not supported by experiments or elasticity theory. We derive a closed-form formula for the stiffness matrix of multiple contact arrangements that admits a variety of nonlinear contact models, including the well-justified Hertz model. The stiffness matrix formula depends on the geometrical and material properties of the contacting bodies and on the initial loading at the contacts. We use the formula to analyze the relative influence of first- and second-order geometrical effects on the stability of multiple contact arrangements. Second-order effects, i.e., curvature effects, are often practically beneficial and sometimes lead to significant grasp stabilization. However, in some contact arrangements, curvature has a dominant destabilizing influence. Such contact arrangements are deemed stable under an all-rigid body model but, in fact, are unstable when the natural compliance of the contacting bodies is taken into account. We also consider the combined influence of curvature and contact preloading on stability. Contrary to conventional wisdom, under certain curvature conditions, higher preloading can increase rather than decrease grasp stability. Finally, we use the stiffness matrix formula to investigate the impact of different choices of contact model on the assessment of the stability of multiple contact arrangements. While the linear-spring model and the more realistic Hertz model usually lead to the same stability conclusions, in some cases, the two models lead to different stability results

    Cable Manipulation with a Tactile-Reactive Gripper

    Full text link
    Cables are complex, high dimensional, and dynamic objects. Standard approaches to manipulate them often rely on conservative strategies that involve long series of very slow and incremental deformations, or various mechanical fixtures such as clamps, pins or rings. We are interested in manipulating freely moving cables, in real time, with a pair of robotic grippers, and with no added mechanical constraints. The main contribution of this paper is a perception and control framework that moves in that direction, and uses real-time tactile feedback to accomplish the task of following a dangling cable. The approach relies on a vision-based tactile sensor, GelSight, that estimates the pose of the cable in the grip, and the friction forces during cable sliding. We achieve the behavior by combining two tactile-based controllers: 1) Cable grip controller, where a PD controller combined with a leaky integrator regulates the gripping force to maintain the frictional sliding forces close to a suitable value; and 2) Cable pose controller, where an LQR controller based on a learned linear model of the cable sliding dynamics keeps the cable centered and aligned on the fingertips to prevent the cable from falling from the grip. This behavior is possible by a reactive gripper fitted with GelSight-based high-resolution tactile sensors. The robot can follow one meter of cable in random configurations within 2-3 hand regrasps, adapting to cables of different materials and thicknesses. We demonstrate a robot grasping a headphone cable, sliding the fingers to the jack connector, and inserting it. To the best of our knowledge, this is the first implementation of real-time cable following without the aid of mechanical fixtures.Comment: Accepted to RSS 202
    corecore