368 research outputs found

    JPEG steganography: A performance evaluation of quantization tables

    Get PDF
    The two most important aspects of any image based steganographic system are the imperceptibility and the capacity of the stego image. This paper evaluates the performance and efficiency of using optimized quantization tables instead of default JPEG tables within JPEG steganography. We found that using optimized tables significantly improves the quality of stego-images. Moreover, we used this optimization strategy to generate a 16x16 quantization table to be used instead of that suggested. The quality of stego-images was greatly improved when these optimized tables were used. This led us to suggest a new hybrid steganographic method in order to increase the embedding capacity. This new method is based on both and Jpeg-Jsteg methods. In this method, for each 16x16 quantized DCT block, the least two significant bits (2-LSBs) of each middle frequency coefficient are modified to embed two secret bits. Additionally, the Jpeg-Jsteg embedding technique is used for the low frequency DCT coefficients without modifying the DC coefficient. Our experimental results show that the proposed approach can provide a higher information-hiding capacity than the other methods tested. Furthermore, the quality of the produced stego-images is better than that of other methods which use the default tables

    A novel steganography approach for audio files

    Get PDF
    We present a novel robust and secure steganography technique to hide images into audio files aiming at increasing the carrier medium capacity. The audio files are in the standard WAV format, which is based on the LSB algorithm while images are compressed by the GMPR technique which is based on the Discrete Cosine Transform (DCT) and high frequency minimization encoding algorithm. The method involves compression-encryption of an image file by the GMPR technique followed by hiding it into audio data by appropriate bit substitution. The maximum number of bits without significant effect on audio signal for LSB audio steganography is 6 LSBs. The encrypted image bits are hidden into variable and multiple LSB layers in the proposed method. Experimental results from observed listening tests show that there is no significant difference between the stego audio reconstructed from the novel technique and the original signal. A performance evaluation has been carried out according to quality measurement criteria of Signal-to-Noise Ratio (SNR) and Peak Signal-to-Noise Ratio (PSNR)

    Work design improvement at Miroad Rubber Industries Sdn. Bhd.

    Get PDF
    Erul Food Industries known as Salaiport Industry is a family-owned company and was established on July 2017. Salaiport Industry apparently moved to a new place at Pedas, Negeri Sembilan. Previously, Salaiport Industry operated in-house located at Pagoh, Johor. This small company major business is producing frozen smoked beef, smoked quail, smoke catfish and smoked duck. The main frozen product is smoked beef. The frozen smoked meat produced by Salaiport Industry is depending on customer demands. Usually the company produce 40 kg to 60 kg a day and operated between for four days until five days. Therefore, the company produce approximately around 80 kg to 120 kg per week. The company usually take 2 days for 1 complete cycle for the production as the first day the company will only receive the meat from the supplier and freeze the meat for use of tomorrow

    Perfectly secure steganography: hiding information in the quantum noise of a photograph

    Full text link
    We show that the quantum nature of light can be used to hide a secret message within a photograph. Using this physical principle we achieve information-theoretic secure steganography, which had remained elusive until now. The protocol is such that the digital picture in which the secret message is embedded is perfectly undistinguishable from an ordinary photograph. This implies that, on a fundamental level, it is impossible to discriminate a private communication from an exchange of photographs.Comment: 5 pages, 3 figures + appendix : 5 pages, 6 figure

    Robust image steganography against lossy JPEG compression based on embedding domain selection and adaptive error correction

    Full text link
    Transmitting images for communication on social networks has become routine, which is helpful for covert communication. The traditional steganography algorithm is unable to successfully convey secret information since the social network channel will perform lossy operations on images, such as JPEG compression. Previous studies tried to solve this problem by enhancing the robustness or making the cover adapt to the channel processing. In this study, we proposed a robust image steganography method against lossy JPEG compression based on embedding domain selection and adaptive error correction. To improve anti-steganalysis performance, the embedding domain is selected adaptively. To increase robustness and lessen the impact on anti-steganalysis performance, the error correction capacity of the error correction code is adaptively adjusted to eliminate redundancy. The experimental results show that the proposed method achieves better anti-steganalysis and robustness

    Steganographer Identification

    Full text link
    Conventional steganalysis detects the presence of steganography within single objects. In the real-world, we may face a complex scenario that one or some of multiple users called actors are guilty of using steganography, which is typically defined as the Steganographer Identification Problem (SIP). One might use the conventional steganalysis algorithms to separate stego objects from cover objects and then identify the guilty actors. However, the guilty actors may be lost due to a number of false alarms. To deal with the SIP, most of the state-of-the-arts use unsupervised learning based approaches. In their solutions, each actor holds multiple digital objects, from which a set of feature vectors can be extracted. The well-defined distances between these feature sets are determined to measure the similarity between the corresponding actors. By applying clustering or outlier detection, the most suspicious actor(s) will be judged as the steganographer(s). Though the SIP needs further study, the existing works have good ability to identify the steganographer(s) when non-adaptive steganographic embedding was applied. In this chapter, we will present foundational concepts and review advanced methodologies in SIP. This chapter is self-contained and intended as a tutorial introducing the SIP in the context of media steganography.Comment: A tutorial with 30 page
    • …
    corecore