4,452 research outputs found

    Genetic and Swarm Algorithms for Optimizing the Control of Building HVAC Systems Using Real Data: A Comparative Study.

    Get PDF
    Buildings consume a considerable amount of electrical energy, the Heating, Ventilation, and Air Conditioning (HVAC) system being the most demanding. Saving energy and maintaining comfort still challenge scientists as they conflict. The control of HVAC systems can be improved by modeling their behavior, which is nonlinear, complex, and dynamic and works in uncertain contexts. Scientific literature shows that Soft Computing techniques require fewer computing resources but at the expense of some controlled accuracy loss. Metaheuristics-search-based algorithms show positive results, although further research will be necessary to resolve new challenging multi-objective optimization problems. This article compares the performance of selected genetic and swarmintelligence- based algorithms with the aim of discerning their capabilities in the field of smart buildings. MOGA, NSGA-II/III, OMOPSO, SMPSO, and Random Search, as benchmarking, are compared in hypervolume, generational distance, ε-indicator, and execution time. Real data from the Building Management System of Teatro Real de Madrid have been used to train a data model used for the multiple objective calculations. The novelty brought by the analysis of the different proposed dynamic optimization algorithms in the transient time of an HVAC system also includes the addition, to the conventional optimization objectives of comfort and energy efficiency, of the coefficient of performance, and of the rate of change in ambient temperature, aiming to extend the equipment lifecycle and minimize the overshooting effect when passing to the steady state. The optimization works impressively well in energy savings, although the results must be balanced with other real considerations, such as realistic constraints on chillers’ operational capacity. The intuitive visualization of the performance of the two families of algorithms in a real multi-HVAC system increases the novelty of this proposal.post-print888 K

    Topology optimization of freeform large-area metasurfaces

    Full text link
    We demonstrate optimization of optical metasurfaces over 10510^5--10610^6 degrees of freedom in two and three dimensions, 100--1000+ wavelengths (λ\lambda) in diameter, with 100+ parameters per λ2\lambda^2. In particular, we show how topology optimization, with one degree of freedom per high-resolution "pixel," can be extended to large areas with the help of a locally periodic approximation that was previously only used for a few parameters per λ2\lambda^2. In this way, we can computationally discover completely unexpected metasurface designs for challenging multi-frequency, multi-angle problems, including designs for fully coupled multi-layer structures with arbitrary per-layer patterns. Unlike typical metasurface designs based on subwavelength unit cells, our approach can discover both sub- and supra-wavelength patterns and can obtain both the near and far fields
    corecore