438 research outputs found

    Simulation of LTE-TDD in the HAPS channel

    Get PDF
    LTE stands for Long Term Evolution. This technology enhances the data rate and capacity using a new radio interface and an optimized core network. This progress was done to satisfy standards defined for the fourth generation of cellular communications in ITU. LTE has two types of transmission: Frequency Division Duplex (FDD) and Time Division Duplex (TDD). Nowadays, LTE-TDD rapidly Grows and takes place of old fixed cellular communications, like WiMAX. Another upcoming technology in the communication industry is High Amplitude Platform Stations (HAPS). Studying the capability of HAPS as a base station for LTE-TDD is the main purpose of this paper. Simulations have done using HAPS channel and compared to Stanford University Interim (SUI) standard channels for different scenarios. Results were compared to achieve a conclusion on HAPS implementation for LTE-TDD based on BER and data throughput

    Contributions to channel modelling and performance estimation of HAPS-based communication systems regarding IEEE Std 802.16TM

    Get PDF
    New and future telecommunication networks are and will be broadband type. The existing terrestrial and space radio communication infrastructures might be supplemented by new wireless networks that make and will make use of aeronautics-technology. Our study/contribution is referring to radio communications based on radio stations aboard a stratospheric platform named, by ITU-R, HAPS (High Altitude Platform Station). These new networks have been proposed as an alternative technology within the ITU framework to provide various narrow/broadband communication services. With the possibility of having a payload for Telecommunications in an aircraft or a balloon (HAPS), it can be carried out radio communications to provide backbone connections on ground and to access to broadband points for ground terminals. The latest implies a complex radio network planning. Therefore, the radio coverage analysis at outdoors and indoors becomes an important issue on the design of new radio systems. In this doctoral thesis, the contribution is related to the HAPS application for terrestrial fixed broadband communications. HAPS was hypothesised as a quasi-static platform with height above ground at the so-called stratospheric layer. Latter contribution was fulfilled by approaching via simulations the outdoor-indoor coverage with a simple efficient computational model at downlink mode. This work was assessing the ITU-R recommendations at bands recognised for the HAPS-based networks. It was contemplated the possibility of operating around 2 GHz (1820 MHz, specifically) because this band is recognised as an alternative for HAPS networks that can provide IMT-2000 and IMT-Advanced services. The global broadband radio communication model was composed of three parts: transmitter, channel, and receiver. The transmitter and receiver parts were based on the specifications of the IEEE Std 802.16TM-2009 (with its respective digital transmission techniques for a robust-reliable link), and the channel was subjected to the analysis of radio modelling at the level of HAPS and terrestrial (outdoors plus indoors) parts. For the channel modelling was used the two-state characterisation (physical situations associated with the transmitted/received signals), the state-oriented channel modelling. One of the channel-state contemplated the environmental transmission situation defined by a direct path between transmitter and receiver, and the remaining one regarded the conditions of shadowing. These states were dependent on the elevation angle related to the ray-tracing analysis: within the propagation environment, it was considered that a representative portion of the total energy of the signal was received by a direct or diffracted wave, and the remaining power signal was coming by a specular wave, to last-mentioned waves (rays) were added the scattered and random rays that constituted the diffuse wave. At indoors case, the variations of the transmitted signal were also considering the following matters additionally: the building penetration, construction material, angle of incidence, floor height, position of terminal in the room, and indoor fading; also, these indoors radiocommunications presented different type of paths to reach the receiver: obscured LOS, no LOS (NLOS), and hard NLOS. The evaluation of the feasible performance for the HAPS-to-ground terminal was accomplished by means of thorough simulations. The outcomes of the experiment were presented in terms of BER vs. Eb/N0 plotting, getting significant positive conclusions for these kind of system as access network technology based on HAPS

    A Vision and Framework for the High Altitude Platform Station (HAPS) Networks of the Future

    Full text link
    A High Altitude Platform Station (HAPS) is a network node that operates in the stratosphere at an of altitude around 20 km and is instrumental for providing communication services. Precipitated by technological innovations in the areas of autonomous avionics, array antennas, solar panel efficiency levels, and battery energy densities, and fueled by flourishing industry ecosystems, the HAPS has emerged as an indispensable component of next-generations of wireless networks. In this article, we provide a vision and framework for the HAPS networks of the future supported by a comprehensive and state-of-the-art literature review. We highlight the unrealized potential of HAPS systems and elaborate on their unique ability to serve metropolitan areas. The latest advancements and promising technologies in the HAPS energy and payload systems are discussed. The integration of the emerging Reconfigurable Smart Surface (RSS) technology in the communications payload of HAPS systems for providing a cost-effective deployment is proposed. A detailed overview of the radio resource management in HAPS systems is presented along with synergistic physical layer techniques, including Faster-Than-Nyquist (FTN) signaling. Numerous aspects of handoff management in HAPS systems are described. The notable contributions of Artificial Intelligence (AI) in HAPS, including machine learning in the design, topology management, handoff, and resource allocation aspects are emphasized. The extensive overview of the literature we provide is crucial for substantiating our vision that depicts the expected deployment opportunities and challenges in the next 10 years (next-generation networks), as well as in the subsequent 10 years (next-next-generation networks).Comment: To appear in IEEE Communications Surveys & Tutorial

    Mobile and Wireless Communications

    Get PDF
    Mobile and Wireless Communications have been one of the major revolutions of the late twentieth century. We are witnessing a very fast growth in these technologies where mobile and wireless communications have become so ubiquitous in our society and indispensable for our daily lives. The relentless demand for higher data rates with better quality of services to comply with state-of-the art applications has revolutionized the wireless communication field and led to the emergence of new technologies such as Bluetooth, WiFi, Wimax, Ultra wideband, OFDMA. Moreover, the market tendency confirms that this revolution is not ready to stop in the foreseen future. Mobile and wireless communications applications cover diverse areas including entertainment, industrialist, biomedical, medicine, safety and security, and others, which definitely are improving our daily life. Wireless communication network is a multidisciplinary field addressing different aspects raging from theoretical analysis, system architecture design, and hardware and software implementations. While different new applications are requiring higher data rates and better quality of service and prolonging the mobile battery life, new development and advanced research studies and systems and circuits designs are necessary to keep pace with the market requirements. This book covers the most advanced research and development topics in mobile and wireless communication networks. It is divided into two parts with a total of thirty-four stand-alone chapters covering various areas of wireless communications of special topics including: physical layer and network layer, access methods and scheduling, techniques and technologies, antenna and amplifier design, integrated circuit design, applications and systems. These chapters present advanced novel and cutting-edge results and development related to wireless communication offering the readers the opportunity to enrich their knowledge in specific topics as well as to explore the whole field of rapidly emerging mobile and wireless networks. We hope that this book will be useful for students, researchers and practitioners in their research studies

    Modeling the Use of an Airborne Platform for Cellular Communications Following Disruptions

    Get PDF
    In the wake of a disaster, infrastructure can be severely damaged, hampering telecommunications. An Airborne Communications Network (ACN) allows for rapid and accurate information exchange that is essential for the disaster response period. Access to information for survivors is the start of returning to self-sufficiency, regaining dignity, and maintaining hope. Real-world testing has proven that such a system can be built, leading to possible future expansion of features and functionality of an emergency communications system. Currently, there are no airborne civilian communications systems designed to meet the demands of the public following a natural disaster. A system allowing even a limited amount of communications post-disaster is a great improvement on the current situation, where telecommunications are frequently not available. It is technically feasible to use an airborne, wireless, cellular system quickly deployable to disaster areas and configured to restore some of the functions of damaged terrestrial telecommunications networks. The system requirements were presented, leading to the next stage of the planned research, where a range of possible solutions were examined. The best solution was selected based on the earlier, predefined criteria. The system was modeled, and a test ii system built. The system was tested and redesigned when necessary, to meet the requirements. The research has shown how the combination of technology, especially the recent miniaturizations and move to open source software for cellular network components can allow sophisticated cellular networks to be implemented. The ACN system proposed could enable connectivity and reduce the communications problems that were experienced following Hurricane Sandy and Katrina. Experience with both natural and man-made disasters highlights the fact that communications are useful only to the extent that they are accessible and useable by the population

    Coexistence of Terrestrial and HAP 3G Networks during Disaster Scenarios

    Get PDF
    The aim of this paper is to show the possible coexistence of an HAP and a terrestrial component of 3G networks at a single carrier frequency. The main goal is to compare the basic parameters of terrestrial and HAP com-ponent 3G networks modeled in suburban (macrocell) and urban (macro/microcell) areas and to demonstrate the way they impact on each other. This study should present what we assume are the better capabilities of HAP 3G networks compared to their terrestrial counterparts. The parameters of the HAP and terrestrial component of 3G networks, were the terrestrial cells to be disabled during disasters, are also presented

    A TCP Driven CAC scheme: efficient resource utilization in a leaky HAP-satellite integrated scenario

    Get PDF
    An integrated high altitude platform (HAP)-satellite communication system appears to be very suitable for a large set of scenarios including emergency situations, exceptional events, etc. In fact, the satellite capability to provide a broadband and ubiquitous access can be enhanced by the deployment of HAP that allows the use of low-power consuming, cost-efficient, and portable terminals. To obtain an optimum utilization of radio resource, without renouncing to QoS satisfaction, a suitable call admission control scheme must be implemented. Nevertheless, transmission control protocol (TCP) behavior, mainly affected by the high latency and shadowing events, can impact call admission control (CAC) performance. Therefore, it would be desirable that the CAC scheme takes into account also the TCP congestion window real evolution. We present an innovative CAC scheme that uses TCP statistics as one of its inputs and is able to manage different classes of users. Results show that CAC performance is significantly improved by introducing TCP statistics about network congestion as an input parameter

    Implementation Aspects of UMTS 900 MHz/2100 MHz for High Altitude Platforms

    Get PDF
    Projecte realitzat en col.laboraciĂł amb el centre Tampere University of TechnologyHigh Altitude Platforms (HAPs) represent an alternative to terrestrial mobile telecommunications. The aim of HAPs is to offer a feasible solution for the radio access layer of this kind of networks. The strong point of HAPs resides in the fact that they bring together the best features of terrestrial and satellite systems. HAPs have been widely proposed for deploying telecommunication services such as third generation mobile networks. In Europe, third generation of mobile communications system is using UMTS. It has being widely deployed in the last years but still there are certain areas where 3G coverage is not available. Especially in rural areas with low population density, where the operators did not find a cost efficient way to deploy UMTS services. As a result, UMTS in 900 MHz band emerges as a possible way to improve UMTS coverage for these areas, and combining with a HAP-based deployment, a cost efficient way for a widely deployment in sparsely populated and remote areas for 3G services. The work shown in this thesis is a comparison of network simulations obtained from the use of HAPs in the radio access network of UMTS using 900 MHz band and 2100 MHz band. The study was aimed to find the impact of carrier frequency on coverage for a single HAP scenario using different deployment strategies. An antenna study has also been done in order to see the impact of antenna beamwidth on UMTS system. The results obtained reveal that the decrease in the carrier frequency caused a clear increase in the coverage, when correct distance between cells was selected. Consequently the results obtained show the variation of the network performance with the separation between cells using both carrier frequencies, 2100 MHz and 900 MHz

    The Coverage, Capacity and Coexistence of Mixed High Altitude Platform and Terrestrial Segments

    Get PDF
    This thesis explores the coverage, capacity and coexistence of High Altitude Platform (HAP) and terrestrial segments in the same service area. Given the limited spectrum available, mechanisms to manage the co-channel interference to enable effective coexistence between the two infrastructures are examined. Interference arising from the HAP, caused by the relatively high transmit power and the antenna beam profile, has the potential to significantly affect the existing terrestrial system on the ground if the HAP beams are deployed without a proper strategy. Beam-pointing strategies exploiting phased array antennas on the HAPs are shown to be an effective way to place the beams, with each of them forming service cells onto the ground in the service area, especially dense user areas. Using a newly developed RF clustering technique to better point the cells over an area of a dense group of users, it is shown that near maximum coverage of 96% of the population over the service area can be provided while maintaining the coexistence with the existing terrestrial system. To improve the user experience at the cell edge, while at the same time improving the overall capacity of the system, Joint Transmission – Coordinated Multipoint (JT-CoMP) is adapted for a HAP architecture. It is shown how the HAP can potentially enable the tight scheduling needed to perform JT-CoMP due to the centralisation of all virtual E-UTRAN Node Bs (eNodeBs) on the HAP. A trade-off between CINR gain and loss of capacity when adapting JT-CoMP into the HAP system is identified, and strategies to minimise the trade-off are considered. It is shown that 57% of the users benefit from the JT-CoMP. In order to enable coordination between the HAP and terrestrial segments, a joint architecture based on a Cloud – Radio Access Network (C-RAN) system is introduced. Apart from adapting a C-RAN based system to centrally connect the two segments together, the network functional split which varies the degree of the centralised processing is also considered to deal with the limitations of HAP fronthaul link requirements. Based on the fronthaul link requirements acquired from the different splitting options, the ground relay station diversity to connect the HAP to centralised and distributed units (CUs and DUs) is also considered
    • …
    corecore