220 research outputs found

    A statistical shape space model of the palate surface trained on 3D MRI scans of the vocal tract

    Get PDF
    International audienceWe describe a minimally-supervised method for computing a statistical shape space model of the palate surface. The model is created from a corpus of volumetric magnetic resonance imaging (MRI) scans collected from 12 speakers. We extract a 3D mesh of the palate from each speaker, then train the model using principal component analysis (PCA). The palate model is then tested using 3D MRI from another corpus and evaluated using a high-resolution optical scan. We find that the error is low even when only a handful of measured coordinates are available. In both cases, our approach yields promising results. It can be applied to extract the palate shape from MRI data, and could be useful to other analysis modalities, such as electromagnetic articulography (EMA) and ultrasound tongue imaging (UTI)

    A multilinear tongue model derived from speech related MRI data of the human vocal tract

    Get PDF
    We present a multilinear statistical model of the human tongue that captures anatomical and tongue pose related shape variations separately. The model is derived from 3D magnetic resonance imaging data of 11 speakers sustaining speech related vocal tract configurations. The extraction is performed by using a minimally supervised method that uses as basis an image segmentation approach and a template fitting technique. Furthermore, it uses image denoising to deal with possibly corrupt data, palate surface information reconstruction to handle palatal tongue contacts, and a bootstrap strategy to refine the obtained shapes. Our evaluation concludes that limiting the degrees of freedom for the anatomical and speech related variations to 5 and 4, respectively, produces a model that can reliably register unknown data while avoiding overfitting effects. Furthermore, we show that it can be used to generate a plausible tongue animation by tracking sparse motion capture data

    Registration and statistical analysis of the tongue shape during speech production

    Get PDF
    This thesis analyzes the human tongue shape during speech production. First, a semi-supervised approach is derived for estimating the tongue shape from volumetric magnetic resonance imaging data of the human vocal tract. Results of this extraction are used to derive parametric tongue models. Next, a framework is presented for registering sparse motion capture data of the tongue by means of such a model. This method allows to generate full three-dimensional animations of the tongue. Finally, a multimodal and statistical text-to-speech system is developed that is able to synthesize audio and synchronized tongue motion from text.Diese Dissertation beschäftigt sich mit der Analyse der menschlichen Zungenform während der Sprachproduktion. Zunächst wird ein semi-überwachtes Verfahren vorgestellt, mit dessen Hilfe sich Zungenformen von volumetrischen Magnetresonanztomographie- Aufnahmen des menschlichen Vokaltrakts schätzen lassen. Die Ergebnisse dieses Extraktionsverfahrens werden genutzt, um ein parametrisches Zungenmodell zu konstruieren. Danach wird eine Methode hergeleitet, die ein solches Modell nutzt, um spärliche Bewegungsaufnahmen der Zunge zu registrieren. Dieser Ansatz erlaubt es, dreidimensionale Animationen der Zunge zu erstellen. Zuletzt wird ein multimodales und statistisches Text-to-Speech-System entwickelt, das in der Lage ist, Audio und die dazu synchrone Zungenbewegung zu synthetisieren.German Research Foundatio

    Observations on the dynamic control of an articulatory synthesizer using speech production data

    Get PDF
    This dissertation explores the automatic generation of gestural score based control structures for a three-dimensional articulatory speech synthesizer. The gestural scores are optimized in an articulatory resynthesis paradigm using a dynamic programming algorithm and a cost function which measures the deviation from a gold standard in the form of natural speech production data. This data had been recorded using electromagnetic articulography, from the same speaker to which the synthesizer\u27s vocal tract model had previously been adapted. Future work to create an English voice for the synthesizer and integrate it into a text-to-speech platform is outlined.Die vorliegende Dissertation untersucht die automatische Erzeugung von gesturalpartiturbasierten Steuerdaten für ein dreidimensionales artikulatorisches Sprachsynthesesystem. Die gesturalen Partituren werden in einem artikulatorischen Resynthese-Paradigma mittels dynamischer Programmierung optimiert, unter Zuhilfenahme einer Kostenfunktion, die den Abstand zu einem "Gold Standard" in Form natürlicher Sprachproduktionsdaten mißt. Diese Daten waren mit elektromagnetischer Artikulographie am selben Sprecher aufgenommen worden, an den zuvor das Vokaltraktmodell des Synthesesystems angepaßt worden war. Weiterführende Forschung, eine englische Stimme für das Synthesesystem zu erzeugen und sie in eine Text-to-Speech-Plattform einzubetten, wird umrissen

    A Silent-Speech Interface using Electro-Optical Stomatography

    Get PDF
    Sprachtechnologie ist eine große und wachsende Industrie, die das Leben von technologieinteressierten Nutzern auf zahlreichen Wegen bereichert. Viele potenzielle Nutzer werden jedoch ausgeschlossen: Nämlich alle Sprecher, die nur schwer oder sogar gar nicht Sprache produzieren können. Silent-Speech Interfaces bieten einen Weg, mit Maschinen durch ein bequemes sprachgesteuertes Interface zu kommunizieren ohne dafür akustische Sprache zu benötigen. Sie können außerdem prinzipiell eine Ersatzstimme stellen, indem sie die intendierten Äußerungen, die der Nutzer nur still artikuliert, künstlich synthetisieren. Diese Dissertation stellt ein neues Silent-Speech Interface vor, das auf einem neu entwickelten Messsystem namens Elektro-Optischer Stomatografie und einem neuartigen parametrischen Vokaltraktmodell basiert, das die Echtzeitsynthese von Sprache basierend auf den gemessenen Daten ermöglicht. Mit der Hardware wurden Studien zur Einzelworterkennung durchgeführt, die den Stand der Technik in der intra- und inter-individuellen Genauigkeit erreichten und übertrafen. Darüber hinaus wurde eine Studie abgeschlossen, in der die Hardware zur Steuerung des Vokaltraktmodells in einer direkten Artikulation-zu-Sprache-Synthese verwendet wurde. Während die Verständlichkeit der Synthese von Vokalen sehr hoch eingeschätzt wurde, ist die Verständlichkeit von Konsonanten und kontinuierlicher Sprache sehr schlecht. Vielversprechende Möglichkeiten zur Verbesserung des Systems werden im Ausblick diskutiert.:Statement of authorship iii Abstract v List of Figures vii List of Tables xi Acronyms xiii 1. Introduction 1 1.1. The concept of a Silent-Speech Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2. Structure of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2. Fundamentals of phonetics 7 2.1. Components of the human speech production system . . . . . . . . . . . . . . . . . . . 7 2.2. Vowel sounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3. Consonantal sounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4. Acoustic properties of speech sounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.5. Coarticulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.6. Phonotactics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.7. Summary and implications for the design of a Silent-Speech Interface (SSI) . . . . . . . 21 3. Articulatory data acquisition techniques in Silent-Speech Interfaces 25 3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2. Scope of the literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3. Video Recordings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.4. Ultrasonography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.5. Electromyography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.6. Permanent-Magnetic Articulography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.7. Electromagnetic Articulography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.8. Radio waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.9. Palatography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.10.Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4. Electro-Optical Stomatography 55 4.1. Contact sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2. Optical distance sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.3. Lip sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.4. Sensor Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.5. Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.6. Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5. Articulation-to-Text 99 5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.2. Command word recognition pilot study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.3. Command word recognition small-scale study . . . . . . . . . . . . . . . . . . . . . . . . 102 6. Articulation-to-Speech 109 6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.2. Articulatory synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.3. The six point vocal tract model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.4. Objective evaluation of the vocal tract model . . . . . . . . . . . . . . . . . . . . . . . . 116 6.5. Perceptual evaluation of the vocal tract model . . . . . . . . . . . . . . . . . . . . . . . . 120 6.6. Direct synthesis using EOS to control the vocal tract model . . . . . . . . . . . . . . . . 125 6.7. Pitch and voicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 7. Summary and outlook 145 7.1. Summary of the contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 7.2. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 A. Overview of the International Phonetic Alphabet 151 B. Mathematical proofs and derivations 153 B.1. Combinatoric calculations illustrating the reduction of possible syllables using phonotactics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 B.2. Signal Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 B.3. Effect of the contact sensor area on the conductance . . . . . . . . . . . . . . . . . . . . 155 B.4. Calculation of the forward current for the OP280V diode . . . . . . . . . . . . . . . . . . 155 C. Schematics and layouts 157 C.1. Schematics of the control unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 C.2. Layout of the control unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 C.3. Bill of materials of the control unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 C.4. Schematics of the sensor unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 C.5. Layout of the sensor unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 C.6. Bill of materials of the sensor unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 D. Sensor unit assembly 169 E. Firmware flow and data protocol 177 F. Palate file format 181 G. Supplemental material regarding the vocal tract model 183 H. Articulation-to-Speech: Optimal hyperparameters 189 Bibliography 191Speech technology is a major and growing industry that enriches the lives of technologically-minded people in a number of ways. Many potential users are, however, excluded: Namely, all speakers who cannot easily or even at all produce speech. Silent-Speech Interfaces offer a way to communicate with a machine by a convenient speech recognition interface without the need for acoustic speech. They also can potentially provide a full replacement voice by synthesizing the intended utterances that are only silently articulated by the user. To that end, the speech movements need to be captured and mapped to either text or acoustic speech. This dissertation proposes a new Silent-Speech Interface based on a newly developed measurement technology called Electro-Optical Stomatography and a novel parametric vocal tract model to facilitate real-time speech synthesis based on the measured data. The hardware was used to conduct command word recognition studies reaching state-of-the-art intra- and inter-individual performance. Furthermore, a study on using the hardware to control the vocal tract model in a direct articulation-to-speech synthesis loop was also completed. While the intelligibility of synthesized vowels was high, the intelligibility of consonants and connected speech was quite poor. Promising ways to improve the system are discussed in the outlook.:Statement of authorship iii Abstract v List of Figures vii List of Tables xi Acronyms xiii 1. Introduction 1 1.1. The concept of a Silent-Speech Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2. Structure of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2. Fundamentals of phonetics 7 2.1. Components of the human speech production system . . . . . . . . . . . . . . . . . . . 7 2.2. Vowel sounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3. Consonantal sounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4. Acoustic properties of speech sounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.5. Coarticulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.6. Phonotactics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.7. Summary and implications for the design of a Silent-Speech Interface (SSI) . . . . . . . 21 3. Articulatory data acquisition techniques in Silent-Speech Interfaces 25 3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2. Scope of the literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3. Video Recordings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.4. Ultrasonography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.5. Electromyography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.6. Permanent-Magnetic Articulography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.7. Electromagnetic Articulography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.8. Radio waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.9. Palatography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.10.Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4. Electro-Optical Stomatography 55 4.1. Contact sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2. Optical distance sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.3. Lip sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.4. Sensor Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.5. Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.6. Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5. Articulation-to-Text 99 5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.2. Command word recognition pilot study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.3. Command word recognition small-scale study . . . . . . . . . . . . . . . . . . . . . . . . 102 6. Articulation-to-Speech 109 6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.2. Articulatory synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.3. The six point vocal tract model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.4. Objective evaluation of the vocal tract model . . . . . . . . . . . . . . . . . . . . . . . . 116 6.5. Perceptual evaluation of the vocal tract model . . . . . . . . . . . . . . . . . . . . . . . . 120 6.6. Direct synthesis using EOS to control the vocal tract model . . . . . . . . . . . . . . . . 125 6.7. Pitch and voicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 7. Summary and outlook 145 7.1. Summary of the contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 7.2. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 A. Overview of the International Phonetic Alphabet 151 B. Mathematical proofs and derivations 153 B.1. Combinatoric calculations illustrating the reduction of possible syllables using phonotactics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 B.2. Signal Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 B.3. Effect of the contact sensor area on the conductance . . . . . . . . . . . . . . . . . . . . 155 B.4. Calculation of the forward current for the OP280V diode . . . . . . . . . . . . . . . . . . 155 C. Schematics and layouts 157 C.1. Schematics of the control unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 C.2. Layout of the control unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 C.3. Bill of materials of the control unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 C.4. Schematics of the sensor unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 C.5. Layout of the sensor unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 C.6. Bill of materials of the sensor unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 D. Sensor unit assembly 169 E. Firmware flow and data protocol 177 F. Palate file format 181 G. Supplemental material regarding the vocal tract model 183 H. Articulation-to-Speech: Optimal hyperparameters 189 Bibliography 19

    Resonance Tuning in Professional Operatic Sopranos

    Get PDF
    Soprano singers are capable of singing at pitches exceeding 1000 Hz, where the spacing of the harmonics means that the vocal tract resonances are not fully utilised. Sopranos therefore move the articulators, to "tune" the resonances of the vocal tract near to harmonics of the voice source, improving the efficiency of sound production. Although resonance tuning has been observed in soprano singers, it is not yet understood how this phenomenon is achieved and which articulators play the most significant roles in altering the vocal tract resonances. A preliminary experiment explored the use of broad band noise excitation of the vocal tract to observe resonance tuning behaviour in girl choristers. A second experiment extended this procedure to include MRI to observe the vocal tracts of 6 professional soprano opera singers and investigate how the articulators affect vocal tract resonances. The effects of MRI measurement conditions on singers were also investigated to establish whether measurements obtained during MRI are representative of normal singing. Finally, a perceptual test was conducted to study the perception of different methods of resonance tuning. As expected, considerable R1:f0 tuning, and some R2:2f0 tuning was observed in both groups. MRI revealed some links between resonances and articulators, however no consistent patterns in production were observed across subjects. The results showed strong differences in resonance production between different vowels and subjects, suggesting that resonance tuning production is not only a complex and context-specific topic, but also highly individual

    An MRI-based articulatory and acoustic study of American English liquid sounds /r/ and /l/

    Get PDF
    In American English, the liquid sounds /r/ and /l/ are the most articulatorily variable and complex sounds. They can be produced by several distinct types of tongue configurations and are the most troublesome sounds for children and nonnative English-speakers to learn. Better understanding of this many-to-one mapping between articulation and acoustics would be beneficial to other areas such as speech pathology, speaker verification, speech recognition and speech synthesis. In this dissertation, two articulatory configurations for each liquid sound were studied (a "retroflex" /r/ vs. a "bunched" /r/, and a light /l/ vs. a dark /l/). Different from previous work on liquids, finite element analysis has been performed to obtain the acoustic responses of the three-dimensional (3-D) vocal tract models, which are based on volumetric magnetic resonance (MR) imaging. Area function models were derived based on the wave propagation property inside the vocal tract. The retroflex /r/ and the bunched /r/ show similar patterns of F1-F3 but very different spacing between F4 and F5. The results from the formant acoustic sensitivity functions and simple-tube vocal tract models suggested that this F4/F5 difference can be explained largely by differences in whether the long cavity behind the palatal constriction acts as a half- or a quarter-wavelength resonator. For both the retroflex /r/ and the bunched /r/, F4 and F5 (along with F3 for the particular speakers studied in this research) come from the long back cavity. However, these formants are half wavelength resonances for the retroflex /r/, but quarter wavelength resonances for the bunched /r/. While both the dark /l/ and the light /l/ have a linguo-alveolar contact and two lateral channels, they differ in the length of the linguo-alveolar contact and in the presence of the linguopalatal contacts caused by raising the sides of the tongue. Both have similar patterns in F1-F3, but differ in the number and locations of zeros in spectrum. For the dark /l/, only one zero occurs below 6 kHz and it is produced by the cross mode posterior to the linguo-alveolar contact. For the light /l/, three zeros below 6 kHz are produced by the asymmetrical channels, the supralingual cavity and the cross mode posterior to the linguo-alveolar contact. The results from two simple vocal tract models show that the lateral channels have to be asymmetrical with an effective length between 3-6 cm to get a zero in the region of F3-F5. Based on the Buckeye database, the acoustic variability and discriminative power of liquids were studied with the mel-frequency band energy coefficients as acoustic parameter. Analysis of variance shows that the inter-speaker variability of /r/ is larger than any other phonemes except /sh/, /s/ and /zh/. On average, /r/ and /l/ have larger inter-speaker variability than any other broad phonetic class. The F-ratio averages of liquids are larger than glides, fricatives, affricates and stops, but smaller than nasals. The speaker identification experiments show that the ranking of the average discriminative power for liquids and other broad phonetic classes is: /r/ > Glides > /l/ > Affricates > Fricatives > Stops > Nasals > Vowels
    corecore