12,622 research outputs found

    A Statistical Perspective on Algorithmic Leveraging

    Full text link
    One popular method for dealing with large-scale data sets is sampling. For example, by using the empirical statistical leverage scores as an importance sampling distribution, the method of algorithmic leveraging samples and rescales rows/columns of data matrices to reduce the data size before performing computations on the subproblem. This method has been successful in improving computational efficiency of algorithms for matrix problems such as least-squares approximation, least absolute deviations approximation, and low-rank matrix approximation. Existing work has focused on algorithmic issues such as worst-case running times and numerical issues associated with providing high-quality implementations, but none of it addresses statistical aspects of this method. In this paper, we provide a simple yet effective framework to evaluate the statistical properties of algorithmic leveraging in the context of estimating parameters in a linear regression model with a fixed number of predictors. We show that from the statistical perspective of bias and variance, neither leverage-based sampling nor uniform sampling dominates the other. This result is particularly striking, given the well-known result that, from the algorithmic perspective of worst-case analysis, leverage-based sampling provides uniformly superior worst-case algorithmic results, when compared with uniform sampling. Based on these theoretical results, we propose and analyze two new leveraging algorithms. A detailed empirical evaluation of existing leverage-based methods as well as these two new methods is carried out on both synthetic and real data sets. The empirical results indicate that our theory is a good predictor of practical performance of existing and new leverage-based algorithms and that the new algorithms achieve improved performance.Comment: 44 pages, 17 figure

    A Statistical Perspective on Randomized Sketching for Ordinary Least-Squares

    Full text link
    We consider statistical as well as algorithmic aspects of solving large-scale least-squares (LS) problems using randomized sketching algorithms. For a LS problem with input data (X,Y)∈Rn×p×Rn(X, Y) \in \mathbb{R}^{n \times p} \times \mathbb{R}^n, sketching algorithms use a sketching matrix, S∈Rr×nS\in\mathbb{R}^{r \times n} with r≪nr \ll n. Then, rather than solving the LS problem using the full data (X,Y)(X,Y), sketching algorithms solve the LS problem using only the sketched data (SX,SY)(SX, SY). Prior work has typically adopted an algorithmic perspective, in that it has made no statistical assumptions on the input XX and YY, and instead it has been assumed that the data (X,Y)(X,Y) are fixed and worst-case (WC). Prior results show that, when using sketching matrices such as random projections and leverage-score sampling algorithms, with p<r≪np < r \ll n, the WC error is the same as solving the original problem, up to a small constant. From a statistical perspective, we typically consider the mean-squared error performance of randomized sketching algorithms, when data (X,Y)(X, Y) are generated according to a statistical model Y=Xβ+ϵY = X \beta + \epsilon, where ϵ\epsilon is a noise process. We provide a rigorous comparison of both perspectives leading to insights on how they differ. To do this, we first develop a framework for assessing algorithmic and statistical aspects of randomized sketching methods. We then consider the statistical prediction efficiency (PE) and the statistical residual efficiency (RE) of the sketched LS estimator; and we use our framework to provide upper bounds for several types of random projection and random sampling sketching algorithms. Among other results, we show that the RE can be upper bounded when p<r≪np < r \ll n while the PE typically requires the sample size rr to be substantially larger. Lower bounds developed in subsequent results show that our upper bounds on PE can not be improved.Comment: 27 pages, 5 figure

    Load curve data cleansing and imputation via sparsity and low rank

    Full text link
    The smart grid vision is to build an intelligent power network with an unprecedented level of situational awareness and controllability over its services and infrastructure. This paper advocates statistical inference methods to robustify power monitoring tasks against the outlier effects owing to faulty readings and malicious attacks, as well as against missing data due to privacy concerns and communication errors. In this context, a novel load cleansing and imputation scheme is developed leveraging the low intrinsic-dimensionality of spatiotemporal load profiles and the sparse nature of "bad data.'' A robust estimator based on principal components pursuit (PCP) is adopted, which effects a twofold sparsity-promoting regularization through an â„“1\ell_1-norm of the outliers, and the nuclear norm of the nominal load profiles. Upon recasting the non-separable nuclear norm into a form amenable to decentralized optimization, a distributed (D-) PCP algorithm is developed to carry out the imputation and cleansing tasks using networked devices comprising the so-termed advanced metering infrastructure. If D-PCP converges and a qualification inequality is satisfied, the novel distributed estimator provably attains the performance of its centralized PCP counterpart, which has access to all networkwide data. Computer simulations and tests with real load curve data corroborate the convergence and effectiveness of the novel D-PCP algorithm.Comment: 8 figures, submitted to IEEE Transactions on Smart Grid - Special issue on "Optimization methods and algorithms applied to smart grid
    • …
    corecore