3,544 research outputs found

    Experimental Path Loss Models for In-Body Communications Within 2.36-2.5 GHz

    Get PDF
    "(c) 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works."Biomedical implantable sensors transmitting a variety of physiological signals have been proven very useful in the management of chronic diseases. Currently, the vast majority of these in-body wireless sensors communicate in frequencies below 1 GHz. Although the radio propagation losses through biological tissues may be lower in such frequencies, e.g., the medical implant communication services band of 402 to 405 MHz, the maximal channel bandwidths allowed therein constrain the implantable devices to low data rate transmissions. Novel and more sophisticated wireless in-body sensors and actuators may require higher data rate communication interfaces. Therefore, the radio spectrum above 1 GHz for the use of wearable medical sensing applications should be considered for in-body applications too. Wider channel bandwidths and smaller antenna sizes may be obtained in frequency bands above 1 GHz at the expense of larger propagation losses. Therefore, in this paper, we present a phantom-based radio propagation study for the frequency bands of 2360 to 2400 MHz, which has been set aside for wearable body area network nodes, and the industrial, scientific, medical band of 2400 to 2483.5 MHz. Three different channel scenarios were considered for the propagation measurements: in-body to in-body, in-body to on-body, and in-body to off-body.We provide for the first time path loss formulas for all these cases.Chavez-Santiago, R.; García Pardo, C.; Fornés Leal, A.; Vallés Lluch, A.; Vermeeren, G.; Joseph, W.; Balasingham, I.... (2015). Experimental Path Loss Models for In-Body Communications Within 2.36-2.5 GHz. IEEE Journal of Biomedical and Health Informatics. 19(3):930-937. doi:10.1109/JBHI.2015.2418757S93093719

    The automated loading and detection of brachytherapy elements using non-mechanical interaction for use in prostate cancer treatment

    Get PDF
    Within the recent resurgence of brachytherapy as treatment for prostate cancer, many new devices have been conceived in the preparation of surgical brachytherapy equipment. Specifically, this work encompasses the automated preparation of pre-loaded surgical brachytherapy applicators or”needles” through the loading of radioactive seed elements and benign spacer elements. While traditionally a manual operation, current device methodology in this application revolves around semi-automatic mechanical interaction within the element loading procedure. Mechanical interaction can subject elements to damage; specifically seed elements due to thin metallic construct. Damage to elements within a loading system can result in failure of the performed brachytherapy treatment causing potential harm to the patient. Hesitancy in acceptance of these mechanical separation element loading devices can be attributed to the failure nature of these devices. This work seeks to solve the current issue of element damage through non-interaction while offering improvement through full automation of the loading procedure

    Ultrawideband Technology for Medical In-Body Sensor Networks: An Overview of the Human Body as a Propagation Medium, Phantoms, and Approaches for Propagation Analysis

    Full text link
    [EN] An in-body sensor network is that in which at least one of the sensors is located inside the human body. Such wireless in-body sensors are used mainly in medical applications, collecting and monitoring important parameters for health and disease treatment. IEEE Standard 802.15.6-2012 for wireless body area networks (WBANs) considers in-body communications in the Medical Implant Communications Service (MICS) band. Nevertheless, high-data-rate communications are not feasible at the MICS band because of its narrow occupied bandwidth. In this framework, ultrawideband (UWB) systems have emerged as a potential solution for in-body highdata-rate communications because of their miniaturization capabilities and low power consumption.This work was supported by the Programa de Ayudas de Investigación y Desarrollo (PAID-01-16) at the Universitat Politècnica de València, Spain; by the Ministerio de Economía y Competitividad, Spain (TEC2014-60258-C2-1-R); and by the European FEDER funds. It was also funded by the European Union’s H2020:MSCA:ITN program for the Wireless In-Body Environ-ment Communication–WiBEC project under grant 675353.Garcia-Pardo, C.; Andreu-Estellés, C.; Fornés Leal, A.; Castelló-Palacios, S.; Pérez-Simbor, S.; Barbi, M.; Vallés Lluch, A.... (2018). Ultrawideband Technology for Medical In-Body Sensor Networks: An Overview of the Human Body as a Propagation Medium, Phantoms, and Approaches for Propagation Analysis. IEEE Antennas and Propagation Magazine. 60(3):19-33. https://doi.org/10.1109/MAP.2018.2818458S193360

    Specific absorption rate and path loss in specific body location in heterogeneous human model

    Get PDF
    A multi-implant scenario is considered using insulated dipole antennas for specific locations such as the liver, heart, spleen and the kidneys where implants communicate with a pacemaker acting as a central hub. Wireless communication within human body experiences loss in the form of attenuation and absorption, and to identify these losses, the path loss is studied in this paper for an adult and child heterogeneous human model. Link performance is calculated to investigate the applicability of in-body communication. The specific absorption rate for all these locations is also studied to verify compliance with international safety guidelines
    • …
    corecore